A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor

Mol Microbiol. 2006 Apr;60(1):240-51. doi: 10.1111/j.1365-2958.2006.05097.x.

Abstract

Heat shock transcription factor (HSF) mediates the transcriptional response of eukaryotic cells to heat, infection and inflammation, pharmacological agents, and other stresses. Although genes encoding heat shock proteins (HSPs) are the best characterized targets of HSF, recent genome-wide localization of Saccharomyces cerevisiae HSF revealed novel HSF targets involved in a wide range of cellular functions. One such target, the RPN4 gene, encodes a transcription factor that directly activates expression of a number of genes encoding proteasome subunits. Here we demonstrate that HSF co-ordinates a feed-forward gene regulatory circuit for RPN4 activation. We show that HSF activates expression of PDR3, encoding a multidrug resistance (MDR) transcription factor that also directly activates RPN4 gene expression. We demonstrate that the HSF binding site (HSE) in the RPN4 promoter is primarily responsible for heat- or methyl methanesulphonate induction of RPN4, with a minor contribution of Pdr3 binding sites (PDREs), while a Yap1 binding site (YRE) is responsible for RPN4 induction in response to oxidative stress. Furthermore, heat-induced expression of Rpn4 protein leads to expression of Rpn4 targets at later stages of heat stress, providing a temporal controlling mechanism for proteasome synthesis upon stress conditions that could result in irreversibly damaged proteins. In addition, the overlapping transcriptional regulatory networks involving HSF, Yap1 and Pdr3 suggest a close linkage between stress responses and pleiotropic drug resistance.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Binding Sites
  • DNA-Binding Proteins / chemistry
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism*
  • Drug Resistance, Microbial
  • Gene Expression Regulation, Fungal*
  • Heat-Shock Proteins / genetics
  • Heat-Shock Proteins / metabolism*
  • Heat-Shock Response*
  • Methyl Methanesulfonate
  • Promoter Regions, Genetic
  • Proteasome Endopeptidase Complex / metabolism*
  • Saccharomyces cerevisiae / drug effects
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / metabolism*
  • Saccharomyces cerevisiae Proteins / chemistry
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism*
  • Transcription Factors / chemistry
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*

Substances

  • DNA-Binding Proteins
  • HSF1 protein, S cerevisiae
  • Heat-Shock Proteins
  • PDR3 protein, S cerevisiae
  • RPN4 protein, S cerevisiae
  • Saccharomyces cerevisiae Proteins
  • Transcription Factors
  • Methyl Methanesulfonate
  • Proteasome Endopeptidase Complex