Molecular Targets of Dietary Agents for Prevention and Therapy of Cancer

Biochem Pharmacol. 2006 May 14;71(10):1397-421. doi: 10.1016/j.bcp.2006.02.009. Epub 2006 Feb 23.

Abstract

While fruits and vegetables are recommended for prevention of cancer and other diseases, their active ingredients (at the molecular level) and their mechanisms of action less well understood. Extensive research during the last half century has identified various molecular targets that can potentially be used not only for the prevention of cancer but also for treatment. However, lack of success with targeted monotherapy resulting from bypass mechanisms has forced researchers to employ either combination therapy or agents that interfere with multiple cell-signaling pathways. In this review, we present evidence that numerous agents identified from fruits and vegetables can interfere with several cell-signaling pathways. The agents include curcumin (turmeric), resveratrol (red grapes, peanuts and berries), genistein (soybean), diallyl sulfide (allium), S-allyl cysteine (allium), allicin (garlic), lycopene (tomato), capsaicin (red chilli), diosgenin (fenugreek), 6-gingerol (ginger), ellagic acid (pomegranate), ursolic acid (apple, pears, prunes), silymarin (milk thistle), anethol (anise, camphor, and fennel), catechins (green tea), eugenol (cloves), indole-3-carbinol (cruciferous vegetables), limonene (citrus fruits), beta carotene (carrots), and dietary fiber. For instance, the cell-signaling pathways inhibited by curcumin alone include NF-kappaB, AP-1, STAT3, Akt, Bcl-2, Bcl-X(L), caspases, PARP, IKK, EGFR, HER2, JNK, MAPK, COX2, and 5-LOX. The active principle identified in fruit and vegetables and the molecular targets modulated may be the basis for how these dietary agents not only prevent but also treat cancer and other diseases. This work reaffirms what Hippocrates said 25 centuries ago, let food be thy medicine and medicine be thy food.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Anticarcinogenic Agents / therapeutic use*
  • Chemoprevention
  • Diet*
  • Fruit
  • Gene Expression
  • Humans
  • Molecular Biology
  • Neoplasms / diet therapy*
  • Neoplasms / prevention & control*
  • Signal Transduction
  • Vegetables

Substances

  • Anticarcinogenic Agents