Cross-species clues of an epigenetic imprinting regulatory code for the IGF2R gene

Cytogenet Genome Res. 2006;113(1-4):202-8. doi: 10.1159/000090833.


The epigenetic marks on the IGF2R gene that encodes a receptor responsible for IGF-II degradation consist of differentially methylated DNA in association with multiple modifications on the associated histones. We review these epigenetic marks across various species during the evolution of IGF2R imprinting. Both IGF2 and IGF2R genesare imprinted in the mammal lineage that diverged from Monotremata approximately 150 million years ago. While IGF2 is consistently imprinted in all mammals following its divergence, IGF2R imprinting disappears in the Euarchonta lineage, including human species, approximately 75 million years ago. Differential DNA methylation marks on the two parental alleles correlate with imprinting in all imprinted genes including IGF2R. While the DNA methylation marks in the IGF2R promoter region 1 (DMR1) correlate with IGF2R allelic expression, the DNA methylation marks in the intron region 2 (DMR2) fail to correlate with IGF2R imprinting status in a number of species. Human IGF2R and mouse neuronal Igf2r are not imprinted despite the presence of DMR2. We have noted that human IGF2R is not imprinted in more than 100 informative samples including various tumor tissues. Furthermore, opossum (Marsupialia) IGF2R is consistently imprinted despite the absence of DMR2. These lines of evidence indicate that DNA methylation marks in DMR2 are neither necessary nor sufficient for consistent imprinting of IGF2R across species. Histone modification marks, however, correlate more consistently with the tissue-specific and species-specific imprinting status of IGF2R in human and mouse. Acetylated histone H3 and H4 and methylated lysine 4 of H3 (H3-K4Me) associate with transcriptionally active alleles while tri-methylated lysine 9 of H3 (H3-K9Me3) marks the silenced alleles. In the mouse, an antisense non-coding transcript called Air is transcribed from DMR2 on the paternal allele, and this imprinted transcript plays a central role in Igf2r imprinting. Mouse Igf2r imprinting depends on an Air RNA while the existence of AIR in other species is unknown. Overall, DNA methylation, histone acetylation, and histone methylation play a vital role in coordinating IGF2R allelic expression across all species. Rare monoallelic or skewed allelic expression of human IGF2R and their biological importance warrants further rigorous study.

Publication types

  • Comparative Study
  • Review

MeSH terms

  • Animals
  • Chromosomes, Human, Pair 6
  • DNA Methylation
  • Evolution, Molecular
  • Exons
  • Female
  • Gene Expression Regulation*
  • Genomic Imprinting*
  • Humans
  • Male
  • Mice
  • Receptor, IGF Type 2 / genetics*
  • Species Specificity
  • Vertebrates / genetics


  • Receptor, IGF Type 2