Progressive increase in point mutations associated with chloroquine resistance in Plasmodium falciparum isolates from India

J Infect Dis. 2006 May 1;193(9):1304-12. doi: 10.1086/502979. Epub 2006 Mar 21.

Abstract

Background: Effective malaria control programs require continuous monitoring of drug pressure in the field, using molecular markers.

Methods: We used sequence analysis to investigate the pfcrt and pfmdr1 mutations in Indian Plasmodium falciparum isolates. To evaluate the chloroquine drug pressure in the field, isolates were collected from 5 different areas at 2 time points, with an interval of 2 years.

Results: In 265 P. falciparum isolates, pfcrt mutations were observed at codons 72, 74, 75, 76, and 220, resulting in 8 different genotypes: SMNTS (61.89%), CIETS (12.08%), CMNKS (0.38%), CMNTA (2.64%), CMNTS (4.91%), SMNTA (0.38%), CIDTS (2.26%), and wild-type CMNKA (15.47%). During the 2-year period, there was a significant decrease in the number of isolates with the SMNTS genotype and an increase in the number of isolates with the highly chloroquine-resistant pfcrt genotype CIETS (P < .05). The N86Y mutation was less prevalent (30.13%) than the Y184F mutation (99.16%) in the pfmdr1 gene in 239 isolates, but the number of isolates with the N86Y mutation increased significantly during the 2-year period (P < .05). The number of isolates with higher total numbers of pfcrt and pfmdr1 2-loci mutations, therefore, increased significantly during this period. There was a regional bias in the mutation rate of these genes, because isolates from areas where chloroquine resistance was high had higher numbers of 2-loci mutations, and areas where chloroquine resistance was low had isolates with lower numbers of 2-loci mutations.

Conclusion: There was a temporal increase in the number of pfcrt and pfmdr1 2-loci mutations, and this led to the higher level of chloroquine resistance. This is a cause for concern for the antimalarial drug policy in India.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP-Binding Cassette Transporters / genetics*
  • Animals
  • Antimalarials / pharmacology*
  • Chloroquine / pharmacology*
  • Communicable Disease Control
  • DNA Mutational Analysis
  • DNA, Protozoan / analysis
  • DNA, Protozoan / genetics
  • Drug Resistance / genetics
  • Humans
  • India
  • Malaria, Falciparum / parasitology*
  • Membrane Proteins / genetics*
  • Membrane Transport Proteins
  • Plasmodium falciparum / drug effects*
  • Plasmodium falciparum / genetics
  • Plasmodium falciparum / isolation & purification
  • Point Mutation
  • Protozoan Proteins / genetics*

Substances

  • ATP-Binding Cassette Transporters
  • Antimalarials
  • DNA, Protozoan
  • Membrane Proteins
  • Membrane Transport Proteins
  • PfCRT protein, Plasmodium falciparum
  • Protozoan Proteins
  • mdr gene protein, Plasmodium
  • Chloroquine