Spatiotemporal specificity of neuronal activity directs the modification of receptive fields in the developing retinotectal system

Neuron. 2006 Apr 6;50(1):101-14. doi: 10.1016/j.neuron.2006.02.016.


The precise temporal relation between pre- and postsynaptic activity modulates the strength of synaptic connections. Despite its extensive characterization in vivo and in vitro, the degree to which spike timing-dependent plasticity can shape receptive field properties is unclear. We use in vivo patch-clamp recordings of tectal neurons in developing Xenopus tadpoles to control the precise timing of action potentials with respect to the arrival of a subset of visual inputs evoked by local light stimulation on the retina. The pattern of visual inputs onto a tectal neuron was tracked over time by rapid reverse correlation mapping of receptive fields. Spike timing-dependent potentiation or depression of a subset of synapses reliably shifts the spatial receptive fields toward or away from the trained subregion of visual space, respectively. These results demonstrate that natural patterns of activity evoked by sensory stimuli play an instructive role in the developing nervous system.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / physiology
  • Action Potentials / radiation effects
  • Animals
  • Brain Mapping
  • Evoked Potentials / physiology
  • Evoked Potentials / radiation effects
  • Larva
  • Neurons / physiology*
  • Neurons / radiation effects
  • Patch-Clamp Techniques
  • Photic Stimulation
  • Retina / physiology*
  • Superior Colliculi / physiology*
  • Time Factors
  • Visual Fields / physiology*
  • Visual Pathways / cytology*
  • Visual Perception / physiology
  • Xenopus