Vasoactive intestinal polypeptide receptors in rat cerebral vessels: an autoradiographic study

J Auton Pharmacol. 1991 Oct;11(5):285-93. doi: 10.1111/j.1474-8673.1991.tb00252.x.


1. Localization and pharmacological properties of the vasoactive intestinal polypeptide (VIP) receptors in rat circle of Willis arteries and in the arteries of pial-arachnoid membrane were studied using light microscope autoradiography combined with radioreceptor binding techniques. 2. [125I]-VIP was specifically bound to sections of rat cerebral arteries with a dissociation constant value of 0.5 nM and a binding site density of 80 fmol mg protein-1. Radioreceptor binding experiments revealed that the binding characteristics of [125I]-VIP were consistent with the labelling of specific VIP receptors. The rank order of potency of various substances tested to inhibit [125I]-VIP binding was the following: VIP greater than peptide histidine methionine greater than secretin greater than glucagon. 3. Light microscope autoradiography revealed the localization of [125I]-VIP binding sites in the medial layer of circle of Willis and pial arteries. Quantitative determination of [125I]-VIP binding site density in the different circle of Willis arteries demonstrated a higher accumulation of silver grains in the anterior than in the posterior cerebral arteries. Pial arteries are richer in VIP receptor sites than circle of Willis arteries. 4. These results suggest that the physiological neurogenic vasodilation elicited by VIP on cerebral arteries is mediated by the interaction with specific receptor sites located primarily within cerebral vessels structures involved in the control of cerebrovascular resistances.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Autoradiography
  • Binding Sites
  • Cerebral Arteries / chemistry*
  • Cerebral Arteries / metabolism
  • Circle of Willis / chemistry*
  • Circle of Willis / metabolism
  • Frozen Sections
  • Iodine Radioisotopes
  • Male
  • Microscopy
  • Radioligand Assay
  • Rats
  • Rats, Inbred Strains
  • Receptors, Gastrointestinal Hormone / analysis*
  • Receptors, Gastrointestinal Hormone / metabolism
  • Receptors, Vasoactive Intestinal Peptide
  • Vasoactive Intestinal Peptide / metabolism
  • Vasoactive Intestinal Peptide / pharmacology*


  • Iodine Radioisotopes
  • Receptors, Gastrointestinal Hormone
  • Receptors, Vasoactive Intestinal Peptide
  • Vasoactive Intestinal Peptide