Prostate tumor growth and recurrence can be modulated by the omega-6:omega-3 ratio in diet: athymic mouse xenograft model simulating radical prostatectomy

Neoplasia. 2006 Feb;8(2):112-24. doi: 10.1593/neo.05637.


Evidence indicates that a diet rich in omega (omega)-6 polyunsaturated fatty acids (PUFAs) [e.g., linoleic acid (LA)] increases prostate cancer (PCa) risk, whereas a diet rich in omega-3 decreases risk. Precisely how these PUFAs affect disease development remains unclear. So we examined the roles that PUFAs play in PCa, and we determined if increased omega-3 consumption can impede tumor growth. We previously demonstrated an increased expression of an omega-6 LA-metabolizing enzyme, 15-lipoxygenase-1 (15-LO-1, ALOX15), in prostate tumor tissue compared with normal adjacent prostate tissue, and that elevated 15-LO-1 activity in PCa cells has a protumorigenic effect. A PCa cell line, Los Angeles Prostate Cancer-4 (LAPC-4), expresses prostate-specific antigen (PSA) as well an active 15-LO-1 enzyme. Therefore, to study whether or not the protumorigenic role of 15-LO-1 and dietary omega-6 LA can be modulated by altering omega-3 levels through diet, we surgically removed tumors caused by LAPC-4 cells (mouse model to simulate radical prostatectomy). Mice were then randomly divided into three different diet groups-namely, high omega-6 LA, high omega-3 stearidonic acid (SDA), and no fat-and examined the effects of omega-6 and omega-3 fatty acids in diet on LAPC-4 tumor recurrence by monitoring for PSA. Mice in these diet groups were monitored for food consumption, body weight, and serum PSA indicative of the presence of LAPC-4 cells. Fatty acid methyl esters from erythrocyte membranes were examined for omega-6 and omega-3 levels to reflect long-term dietary intake. Our results provide evidence that prostate tumors can be modulated by the manipulation of omega-6:omega-3 ratios through diet and that the omega-3 fatty acid SDA [precursor of eicosapentaenoic acid (EPA)] promotes apoptosis and decreases proliferation in cancer cells, causing decreased PSA doubling time, compared to omega-6 LA fatty acid, likely by competing with the enzymes of LA and AA pathways, namely, 15-LO-1 and cyclooxygenases (COXs). Thus, EPA and DHA (major components of fish oil) could potentially be promising dietary intervention agents in PCa prevention aimed at 15-LO-1 and COX-2 as molecular targets. These observations also provide clues as to its mechanisms of action.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Diet*
  • Disease Models, Animal
  • Fatty Acids, Omega-3 / administration & dosage*
  • Fatty Acids, Omega-6 / administration & dosage*
  • Humans
  • Male
  • Mice
  • Mice, Nude
  • Prostatectomy
  • Prostatic Neoplasms / pathology*
  • Prostatic Neoplasms / surgery
  • Recurrence
  • Transplantation, Heterologous


  • Fatty Acids, Omega-3
  • Fatty Acids, Omega-6