LRRK2 in Parkinson's disease: protein domains and functional insights

Trends Neurosci. 2006 May;29(5):286-93. doi: 10.1016/j.tins.2006.03.006. Epub 2006 Apr 17.


Parkinson's disease (PD) is the most common motor neurodegenerative disease. Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) have been linked recently with autosomal-dominant parkinsonism that is clinically indistinguishable from typical, idiopathic, late-onset PD. Thus, the protein LRRK2 has emerged as a promising therapeutic target for treatment of PD. LRRK2 is extraordinarily large and complex, with multiple enzymatic and protein-interaction domains, each of which is targeted by pathogenic mutations in familial PD. This review places the PD-associated mutations of LRRK2 in a structural and functional framework, with the ultimate aim of deciphering the molecular basis of LRRK2-associated pathogenesis. This, in turn, should advance our understanding and treatment of familial and idiopathic PD.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Humans
  • Leucine-Rich Repeat Serine-Threonine Protein Kinase-2
  • Mutation / genetics
  • Parkinson Disease / enzymology
  • Parkinson Disease / genetics*
  • Protein Serine-Threonine Kinases / chemistry
  • Protein Serine-Threonine Kinases / genetics*
  • Protein Serine-Threonine Kinases / metabolism*
  • Protein Structure, Tertiary / genetics
  • Protein Structure, Tertiary / physiology


  • LRRK2 protein, human
  • Leucine-Rich Repeat Serine-Threonine Protein Kinase-2
  • Protein Serine-Threonine Kinases