The control of saccade trajectories: direction of curvature depends on prior knowledge of target location and saccade latency

Percept Psychophys. 2006 Jan;68(1):129-38. doi: 10.3758/bf03193663.

Abstract

Recent reports have shown that saccades can deviate either toward or away from distractors. However, the specific conditions responsible for the change in initial saccade direction are not known. One possibility, examined here, is that the direction of curvature (toward or away from distractors) reflects preparatory tuning of the oculomotor system when the location of the target and distractor are known in advance. This was investigated by examining saccade trajectories under predictable and unpredictable target conditions. In Experiment 1, the targets and the distractors appeared unpredictably, whereas in Experiment 2 an arrow cue presented at fixation indicated the location of the forthcoming target prior to stimulus onset. Saccades were made to targets on the horizontal, vertical, and principal oblique axis, and distractors appeared simultaneously at an adjacent location (a separation of +/- 45 degrees of visual angle). On average, saccade trajectories curved toward distractors when target locations were unpredictable and curved away from distractors when target locations were known in advance. There was no overall difference in mean saccade latencies between the two experiments. The magnitude of the distractor modulation of saccade trajectory (either toward or away from) was comparable across the different saccade directions (horizontal, vertical, and oblique). These results are interpreted in terms of the time course of competitive interactions operating in the neural structures involved in the suppression of distractors and the selection of a saccade target. A relatively slow mechanism that inhibits movements to distractors produces curvature away from the distractor. This mechanism has more time to operate when target location is predictable, increasing the likelihood that the saccade trajectory will deviate away from the distractor.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Attention
  • Female
  • Humans
  • Male
  • Reaction Time*
  • Saccades*
  • Space Perception*
  • Visual Perception*