Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells

Plant J. 2006 Apr;46(2):231-42. doi: 10.1111/j.1365-313X.2006.02694.x.


Gibberellins (GA) promote while abscisic acid (ABA) inhibits seed germination and post-germination growth. To address the cross-talk of GA and ABA signaling, we studied two rice WRKY genes (OsWRKY51 and OsWRKY71) that are ABA-inducible and GA-repressible in embryos and aleurone cells. Over-expression of these two genes in aleurone cells specifically and synergistically represses induction of the ABA-repressible and GA-inducible Amy32b alpha-amylase promoter reporter construct (Amy32b-GUS) by GA or the GA-inducible transcriptional activator, GAMYB. The physical interactions of OsWRKY71 proteins themselves and that of OsWRKY71 and OsWRKY51 are revealed in the nuclei of aleurone cells using bimolecular fluorescence complementation (BiFC) assays. Although OsWRKY51 itself does not bind to the Amy32b promoter in vitro, it interacts with OsWRKY71 and enhances the binding affinity of OsWRKY71 to W boxes in the Amy32b promoter. The binding activity of OsWRKY71 is abolished by deleting the C-terminus containing the WRKY domain or substituting the key amino acids in the WRKY motif and the zinc finger region. However, two of these non-DNA-binding mutants are still able to repress GA induction by enhancing the binding affinity of the wild-type DNA-binding OsWRKY71 repressors. In contrast, the third non-DNA-binding mutant enhances GA induction of Amy32b-GUS, by interfering with the binding of the wild-type OsWRKY71 or the OsWRKY71/OsWRKY51 repressing complex. These data demonstrate the synergistic interaction of ABA-inducible WRKY genes in regulating GAMYB-mediated GA signaling in aleurone cells, thereby establishing a novel mechanism for ABA and GA signaling cross-talk.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • 2S Albumins, Plant
  • Abscisic Acid / pharmacology*
  • Antigens, Plant
  • Base Sequence
  • DNA Primers
  • DNA-Binding Proteins / genetics
  • Gene Expression Regulation, Plant / drug effects*
  • Gibberellins / physiology*
  • Oryza / drug effects
  • Oryza / physiology*
  • Plant Proteins / genetics*
  • Signal Transduction
  • Transcription Factors / genetics


  • 2S Albumins, Plant
  • Antigens, Plant
  • DNA Primers
  • DNA-Binding Proteins
  • Gibberellins
  • Plant Proteins
  • Transcription Factors
  • Abscisic Acid