Critical behavior of 2,6-dimethylpyridine-water: measurements of specific heat, dynamic light scattering, and shear viscosity

J Chem Phys. 2006 Apr 14;124(14):144517. doi: 10.1063/1.2188396.

Abstract

The specific heat C(p) at constant pressure, the shear viscosity eta(s), and the mutual diffusion coefficient D of the 2,6-dimethylpyridine-water mixture of critical composition have been measured in the homogeneous phase at various temperatures near the lower critical demixing temperature T(c). The amplitude of the fluctuation correlation length xi(0)=(0.198+/-0.004) nm has been derived from a combined evaluation of the eta(s) and D data. This value is in reasonable agreement with the one obtained from the amplitude A(+)=(0.26+/-0.01) J(g K) of the critical term in the specific heat, using the two-scale-factor universality relation. Within the limits of error the relaxation rate Gamma of order parameter fluctuations follows power law with the theoretical universal exponent and with the amplitude Gamma=(25+/-1)x10(9) s(-1). No indications of interferences of the critical fluctuations with other elementary chemical reactions have been found. A noteworthy result is the agreement of the background viscosity eta(b), resulting from the treatment of eta(s) and D data, with the viscosity eta(s)(nu=0) extrapolated from high-frequency viscosity data. The latter have been measured in the frequency range of 5-130 MHz using a novel shear impedance spectrometer.