The importance of nonelectrostatic materials in holding chambers for delivery of hydrofluoroalkane albuterol

Respir Care. 2006 May;51(5):503-10.

Abstract

Introduction: Electrostatic attraction of aerosolized particles to the inner walls of an aerosol holding chamber (HC) made from a nonconducting material can reduce medication delivery, particularly if there is a delay between actuation and inhalation.

Objective: Compare total emitted mass and fine-particle mass (mass of particles < 4.7 microm) of hydrofluoroalkane-propelled albuterol from similar-sized HCs manufactured from conductive material (Vortex), charge-dissipative material (AeroChamber Max), and nonconductive material (OptiChamber Advantage, ProChamber, Breathrite, PocketChamber, and ACE), with and without wash/rinse pretreatment of the HC interior with ionic detergent, and with 2-s and 5-s delays between actuation and inhalation.

Methods: All the HCs were evaluated (1) directly from their packaging (with no wash/rinse pretreatment) and (2) after washing with ionic detergent and rinsing and drip-drying. We used an apparatus that interfaced between the HC mouthpiece and the induction port of an 8-stage Andersen cascade impactor to simulate a poorly coordinated patient, with delays of 2 s and 5 s between actuation and inhalation/sampling, at 28.3 L/min.

Results: With the 2-s delay, the delivered fine-particle mass per actuation, before and after (respectively) wash/rinse pretreatment was: AeroChamber Max: 23.8 +/- 4.8 microg, 21.5 +/- 3.2 microg; Vortex: 16.2 +/- 1.7 microg, 15.5 +/- 2.0 microg; OptiChamber Advantage: 2.6 +/- 1.2 microg, 6.7 +/- 2.3 microg; ProChamber: 1.6 +/- 0.4 microg, 5.1 +/- 2.5 microg; Breathrite: 2.0 +/- 0.9 microg, 3.2 +/- 1.8 microg; PocketChamber: 3.4 +/- 1.6 microg, 1.7 +/- 1.6 microg; ACE: 4.5 +/- 0.9 microg, 5.4 +/- 2.9 microg. Similar trends, but greater reduction in aerosol delivery, were observed with the 5-s delay. Significantly greater fine-particle mass was delivered from HCs made from conducting or charge-dissipative materials than from those made from nonconductive polymers, even after wash/rinse pretreatment (p < 0.01). The fine-particle mass was also significantly greater from the AeroChamber Max than from the Vortex, irrespective of wash/rinse pretreatment or delay interval (p < 0.01).

Conclusion: HCs made from electrically conductive materials emit significantly greater fine-particle mass, with either a 2-s or 5-s delay, than do HCs made from nonconducting materials, even with wash/rinse pretreatment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aerosol Propellants / analysis*
  • Albuterol*
  • Drug Delivery Systems
  • Equipment Failure
  • Humans
  • Hydrocarbons, Fluorinated*
  • Ontario
  • Product Packaging*
  • Static Electricity*

Substances

  • Aerosol Propellants
  • Hydrocarbons, Fluorinated
  • Albuterol
  • apaflurane