The Light-harvesting Chlorophyll a/b-Protein Complex of Chlamydomonas reinhardii

Plant Physiol. 1976 Jan;57(1):47-52. doi: 10.1104/pp.57.1.47.

Abstract

The molecular organization of chlorophyll in Chlamydomonas reinhardii has been shown to be essentially similar to that in higher plants. Some 50% of the chlorophyll in Chlamydomonas reinhardii chloroplast membranes has been shown to be located in a chlorophyll a/b-protein complex. The complex was isolated in a homogeneous form by hydroxylapatite chromatography of sodium dodecyl sulfate extracts of the chloroplast membranes. Its absorption spectrum exhibits two maxima in the red region at 670 and 652 nm due to the presence of equimolar quantities of chlorophylls a and b in the complex. Preparations of the chlorophyll-protein also contain some of each of the carotenoids observed in the intact chloroplast membrane, but not in the same proportions. The native complex (S value = 2.3S) exhibits a molecular weight of 28,000 +/- 2,000 on calibrated sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, on the basis of its amino acid composition and other data a more probable molecular weight of about 35,000 was calculated. Each 35,000 dalton unit contains three chlorophyll a and three chlorophyll b molecules, and on the average one carotenoid molecule conjugated with probably a single polypeptide of 29,000 daltons. Comparison of spectral and biochemical characteristics demonstrates that this algal chlorophyll-protein is homologous to the previously described major light-harvesting chlorophyll a/b-protein of higher plants. It is anticipated that the Chlamydomonas complex functions solely in a light-harvesting capacity in analogy to the function determined for the higher plant component.