Ligand Specificity of a High Affinity Cytokinin-binding Protein

Plant Physiol. 1979 Sep;64(3):387-92. doi: 10.1104/pp.64.3.387.

Abstract

A soluble cytokinin-binding protein from wheat germ that has a high affinity for a range of purine cytokinins also interacts with a variety of nonpurine compounds that can affect cytokinin-modified processes in animal or plant cells or which bind to proteins known to interact with certain cytokinins. A variety of structurally disparate compounds which inhibit chloroplast photosystem II activity (including phenylurea, carbanilate, and alkylamino-2-chloro-sym-triazine compounds) displace kinetin from the protein in an apparently competitive fashion. However, various energy transfer inhibitors (including organotin compounds and N,N'-dicy-clohexylcarbodiimide) also inhibit kinetin binding to the protein. N(6),2-0'-Dibutyryl-3',5'-cyclic AMP and 1-methyl-3-isobutylxanthine (the effects of which on fibroblast morphology and motility can be mimicked by cytokinins) are inhibitors of kinetin binding to the protein. A variety of compounds that can have antimitotic effects (including 1-methyl-3-isobutylxanthine and certain alkylated cyclic nucleotide, carbanilate, and tryptamine compounds) displace kinetin from the protein. However, a variety of indole derivatives also displace kinetin from the cytokinin-binding protein, which in a qualitative sense has a broad ligand specificity.