Economy of water, carbon, and nitrogen in the developing cowpea fruit

Plant Physiol. 1985 Jan;77(1):142-7. doi: 10.1104/pp.77.1.142.

Abstract

The nutritional economy of the fruit of cowpea (Vigna unguiculata (L.) Walp cv Vita 3) was assessed quantitatively from intake and utilization of carbon, nitrogen, and water. Fruits failed to make net gains of CO(2) from the atmosphere during daytime, although pod photosynthesis did play a role in the fruit's carbon economy by refixing a proportion of the fruit's respired CO(2). Of every 100 units by weight of carbon entering the fruit, 70.4 were finally incorporated into seeds, 10.3 remained as nonmobilizable material in pod walls, and the remaining 19.3 were lost in fruit respiration. Phloem supplied 97% of the fruit's carbon and 72% of its nitrogen. The xylem contribution of nitrogen occurred mainly in early growth. Ninety-six% of the fruit's nitrogen was incorporated into seeds, approximately 10% of this mobilized from the senescing pod. The mean transpiration ratio of the fruit was very low-8 milliliters water transpired per gram dry matter accumulated. Models of carbon, nitrogen, and water flow were constructed for the two consecutive 11 day periods of fruit development, and indicated a considerably greater entry of water through xylem and phloem than could be accounted for in changes in fruit tissue water and transpiration loss. This discrepancy was greater in the second half of fruit growth and was interpreted as evidence that a significant fraction of the water entering the fruit through phloem cycled back to the parent plant via the xylem.