Regulation of Sulfate Assimilation by Light and O-Acetyl-l-Serine in Lemna minor L

Plant Physiol. 1991 Sep;97(1):253-8. doi: 10.1104/pp.97.1.253.

Abstract

The effect of 0.5 millimolar O-acetyl-l-serine added to the nutrient solution on sulfate assimilation of Lemna minor L., cultivated in the light or in the dark, or transferred from light to the dark, was examined. During 24 hours after transfer from light to the dark the extractable activity of adenosine 5'-phosphosulfate sulfotransferase, a key enzyme of sulfate assimilation, decreased to 10% of the light control. Nitrate reductase (EC 1.7.7.1.) activity, measured for comparison, decreased to 40%. Adenosine 5'-triphosphate (ATP) sulfurylase (EC 2.7.7.4.) and O-acetyl-l-serine sulfhydrylase (EC 4.2.99.8.) activities were not affected by the transfer. When O-acetyl-l-serine was added to the nutrient solution at the time of transfer to the dark, adenosine 5'-phosphosulfate sulfotransferase activity was still at 50% of the light control after 24 hours, ATP sulfurylase and O-acetyl-l-serine sulfhydrylase activity were again not affected, and nitrate reductase activity decreased as before. Addition of O-acetyl-l-serine at the time of the transfer caused a 100% increase in acid-soluble SH compounds after 24 hours in the dark. In continuous light the corresponding increase was 200%. During 24 hours after transfer to the dark the assimilation of (35)SO(4) (2-) into organic compounds decreased by 80% without O-acetyl-l-serine but was comparable to light controls in its presence. The addition of O-acetyl-l-serine to Lemna minor precultivated in the dark for 24 hours induced an increase in adenosine 5'-phosphosulfate sulfotransferase activity so that a constant level of 50% of the light control was reached after an additional 9 hours. Cycloheximide as well as 6-methyl-purine inhibited this effect. In the same type of experiment O-acetyl-l-serine induced a 100-fold increase in the incorporation of label from (35)SO(4) (2-) into cysteine after additional 24 hours in the dark. Taken together, these results show that exogenous O-acetyl-l-serine has a regulatory effect on assimilatory sulfate reduction of L. minor in light and darkness. They are in agreement with the idea that this compound is a limiting factor for sulfate assimilation and seem to be in contrast to the proposed strict light control of sulfate assimilation.