Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Nov;97(3):1059-72.
doi: 10.1104/pp.97.3.1059.

Hydroperoxide Lyase and Other Hydroperoxide-Metabolizing Activity in Tissues of Soybean, Glycine max

Affiliations

Hydroperoxide Lyase and Other Hydroperoxide-Metabolizing Activity in Tissues of Soybean, Glycine max

H W Gardner et al. Plant Physiol. 1991 Nov.

Abstract

Hydroperoxide lyase (HPLS) activity in soybean (Glycine max) seed/seedlings, leaves, and chloroplasts of leaves required detergent solubilization for maximum in vitro activity. On a per milligram of protein basis, more HPLS activity was found in leaves, especially chloroplasts, than in seeds or seedlings. The total yield of hexanal from 13(S)-hydroperoxy-cis-9,trans-11-octadecadienoic acid (13S-HPOD) from leaf or chloroplast preparations was 58 and 66 to 85%, respectively. Because of significant competing hydroperoxide-metabolizing activities from other enzymes in seed/seedling preparations, the hexanal yields from this source were lower (36-56%). Some of the products identified from the seed or seedling preparations indicated that the competing activity was mainly due to both a hydroperoxide peroxygenase and reactions catalyzed by lipoxygenase. Different HPLS isozyme compositions in the seed/seedling versus the leaf/chloroplast preparations were indicated by differences in the activity as a function of pH, the K(m) values, relative V(max) with 13S-HPOD and 13(S)-hydroperoxy-cis-9,trans-11,cis-15-octadecatrienoic acid (13S-HPOT), and the specificity with different substrates. With regard to the latter, both seed/seedling and chloroplast HPLS utilized the 13S-HPOD and 13S-HPOT substrates, but only seeds/seedlings were capable of metabolizing 9(S)-hydroperoxy-trans-10,cis-12-octadecadienoic acid into 9-oxononanoic acid, isomeric nonenals, and 4-hydroxynonenal. From 13S-HPOD and 13S-HPOT, the products were identified as 12-oxo-cis-9-dodecenoic acid, as well as hexanal from 13S-HPOD and cis-3-hexenal from 13S-HPOT. In seed preparations, there was partial isomerization of the cis-3 or cis-9 into trans-2 or trans-10 double bonds, respectively.

PubMed Disclaimer

References

    1. Plant Physiol. 1989 May;90(1):125-32 - PubMed
    1. J Biol Chem. 1990 Aug 5;265(22):12887-94 - PubMed
    1. Biochim Biophys Acta. 1989 Feb 20;1001(3):274-81 - PubMed
    1. Eur J Biochem. 1976 Feb 2;62(1):33-6 - PubMed
    1. Plant Physiol. 1979 Mar;63(3):536-41 - PubMed

LinkOut - more resources