Characterization of zero-valent iron nanoparticles

Adv Colloid Interface Sci. 2006 Jun 30;120(1-3):47-56. doi: 10.1016/j.cis.2006.03.001. Epub 2006 May 12.


The iron nanoparticle technology has received considerable attention for its potential applications in groundwater treatment and site remediation. Recent studies have demonstrated the efficacy of zero-valent iron nanoparticles for the transformation of halogenated organic contaminants and heavy metals. In this work, we present a systematic characterization of the iron nanoparticles prepared with the method of ferric iron reduction by sodium borohydride. Particle size, size distribution and surface composition were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), high-resolution X-ray photoelectron spectroscopy (HR-XPS), X-ray absorption near edge structure (XANES) and acoustic/electroacoustic spectrometry. BET surface area, zeta (zeta) potential, iso-electric point (IEP), solution Eh and pH were also measured. Methods and results presented may foster better understanding, facilitate information exchange, and contribute to further research and development of iron nanoparticles for environmental and other applications.