Place-specific firing by hippocampal and striatal neurons was recorded simultaneously following injection of a D(1) receptor antagonist (SCH23390) and during spatial working memory task performance. SCH23390-induced changes in unit responses were observed during light and dark test conditions. Although hippocampal place field locations were altered by the contextual change, the reliability and specificity of place fields was disrupted only by combining D(1) antagonism and a change in context. Striatal place field locations were reorganized after either contextual change or D(1) antagonism, without altering place field reliability and specificity. Disrupted velocity encoding by place cells in both regions was induced by darkness, whereas greater stability in acceleration encoding followed removal of D(1) receptor activity. Dopamine may differentially regulate hippocampal context learning and striatum-based predictive codes.
((c) 2006 APA, all rights reserved).