Distribution of Anopheles albimanus, Anopheles vestitipennis, and Anopheles crucians associated with land use in northern Belize

J Med Entomol. 2006 May;43(3):614-22. doi: 10.1603/0022-2585(2006)43[614:doaaav]2.0.co;2.

Abstract

Anthropogenic land use changes often alter natural patterns of disease transmission. The goal of this study was to determine whether phosphorus input from sugarcane, Saccharum officinarum L., cultivation in northern Belize could pose a significant environmental impact on malaria transmission by changing vegetation structure and composition of wetlands and associated larval habitats. Our primary focus was on the increased dominance of cattail, Typha domingensis Pers., a favored habitat for Anopheles vestitipennis Dyar & Knab. A land cover classification based on satellite imagery was used to select 20 marshes impacted by agricultural runoff and 20 marshes surrounded by forest (nonimpacted). A 100-m transect was established into each of the 40 marshes. Water, vegetation, and larval sampling were conducted at the 0-, 10-, 25-, 50-, and 100-m locations along the transect. Analyses of larval density data indicated that Anopheles albimanus Wiedemann was negatively correlated with percentage of cover of Typha (R2 = 0.39, P < 0.001) but positively correlated with sparse Eleocharis cellulosa Torr. (rush) cover (R2 = 0.19, P < 0.05) and presence of cyanobacterial mats (CBM) (R2 = 0.33, P < 0.0001). An. vestitipennis was found to be positively correlated with percentage of cover of Typha (R2 = 0.19, P < 0.001). Canonical correspondence analysis identified CBM and light as the variables associated with the presence of An. albimanuts larvae, Typha cover with An. vestitipennis larvae, and Eleocharis and absence of light with Anopheles crucians (Wiedemann). A positive correlation also existed between marshes adjacent to agricultural activities and presence of An. vestitipennis (R2 = 0.37, P < 0.05). These results indicate that marshes in proximity to agricultural fields are conducive for Typha growth, thereby providing habitat for the more efficient malaria vector

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Agriculture
  • Animals
  • Anopheles / physiology*
  • Belize
  • Environment
  • Insect Vectors
  • Larva
  • Malaria / transmission*
  • Population Density
  • Saccharum / growth & development
  • Seasons
  • Typhaceae / growth & development