Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep;7(3):225-42.
doi: 10.1093/bib/bbl004. Epub 2006 May 23.

Automated Protein Function Prediction--The Genomic Challenge


Automated Protein Function Prediction--The Genomic Challenge

Iddo Friedberg. Brief Bioinform. .


Overwhelmed with genomic data, biologists are facing the first big post-genomic question--what do all genes do? First, not only is the volume of pure sequence and structure data growing, but its diversity is growing as well, leading to a disproportionate growth in the number of uncharacterized gene products. Consequently, established methods of gene and protein annotation, such as homology-based transfer, are annotating less data and in many cases are amplifying existing erroneous annotation. Second, there is a need for a functional annotation which is standardized and machine readable so that function prediction programs could be incorporated into larger workflows. This is problematic due to the subjective and contextual definition of protein function. Third, there is a need to assess the quality of function predictors. Again, the subjectivity of the term 'function' and the various aspects of biological function make this a challenging effort. This article briefly outlines the history of automated protein function prediction and surveys the latest innovations in all three topics.

Similar articles

See all similar articles

Cited by 123 articles

  • CSN: unsupervised approach for inferring biological networks based on the genome alone.
    Galili M, Tuller T. Galili M, et al. BMC Bioinformatics. 2020 May 15;21(1):190. doi: 10.1186/s12859-020-3479-9. BMC Bioinformatics. 2020. PMID: 32414319 Free PMC article.
  • The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens.
    Zhou N, Jiang Y, Bergquist TR, Lee AJ, Kacsoh BZ, Crocker AW, Lewis KA, Georghiou G, Nguyen HN, Hamid MN, Davis L, Dogan T, Atalay V, Rifaioglu AS, Dalkıran A, Cetin Atalay R, Zhang C, Hurto RL, Freddolino PL, Zhang Y, Bhat P, Supek F, Fernández JM, Gemovic B, Perovic VR, Davidović RS, Sumonja N, Veljkovic N, Asgari E, Mofrad MRK, Profiti G, Savojardo C, Martelli PL, Casadio R, Boecker F, Schoof H, Kahanda I, Thurlby N, McHardy AC, Renaux A, Saidi R, Gough J, Freitas AA, Antczak M, Fabris F, Wass MN, Hou J, Cheng J, Wang Z, Romero AE, Paccanaro A, Yang H, Goldberg T, Zhao C, Holm L, Törönen P, Medlar AJ, Zosa E, Borukhov I, Novikov I, Wilkins A, Lichtarge O, Chi PH, Tseng WC, Linial M, Rose PW, Dessimoz C, Vidulin V, Dzeroski S, Sillitoe I, Das S, Lees JG, Jones DT, Wan C, Cozzetto D, Fa R, Torres M, Warwick Vesztrocy A, Rodriguez JM, Tress ML, Frasca M, Notaro M, Grossi G, Petrini A, Re M, Valentini G, Mesiti M, Roche DB, Reeb J, Ritchie DW, Aridhi S, Alborzi SZ, Devignes MD, Koo DCE, Bonneau R, Gligorijević V, Barot M, Fang H, Toppo S, Lavezzo E, Falda M, Berselli M, Tosatto SCE, Carraro M, Piovesan D, Ur Rehman H, Mao Q, Zhang S, Vucetic S, Black GS, Jo D, Suh E, Dayton JB, Larsen DJ, Omdahl AR, McGuffin LJ, Brackenridge DA, Babbitt PC, Yunes JM, Fontana P, Zhang F, Zhu S, You R, Zhang Z, Dai S, Yao S, Tian W, Cao R, Chandler C, Amezola M, Johnson D, Chang JM, Liao WH, Liu YW, Pascarelli S, Frank Y, Hoehndorf R, Kulmanov M, Boudellioua I, Politano G, Di Carlo S, Benso A, Hakala K, Ginter F, Mehryary F, Kaewphan S, Björne J, Moen H, Tolvanen MEE, Salakoski T, Kihara D, Jain A, Šmuc T, Altenhoff A, Ben-Hur A, Rost B, Brenner SE, Orengo CA, Jeffery CJ, Bosco G, Hogan DA, Martin MJ, O'Donovan C, Mooney SD, Greene CS, Radivojac P, Friedberg I. Zhou N, et al. Genome Biol. 2019 Nov 19;20(1):244. doi: 10.1186/s13059-019-1835-8. Genome Biol. 2019. PMID: 31744546 Free PMC article.
  • Novel comparison of evaluation metrics for gene ontology classifiers reveals drastic performance differences.
    Plyusnin I, Holm L, Törönen P. Plyusnin I, et al. PLoS Comput Biol. 2019 Nov 4;15(11):e1007419. doi: 10.1371/journal.pcbi.1007419. eCollection 2019 Nov. PLoS Comput Biol. 2019. PMID: 31682632 Free PMC article.
  • Bioinformatic Exploration of Metal-Binding Proteome of Zoonotic Pathogen Orientia tsutsugamushi.
    Sharma D, Sharma A, Singh B, Verma SK. Sharma D, et al. Front Genet. 2019 Sep 24;10:797. doi: 10.3389/fgene.2019.00797. eCollection 2019. Front Genet. 2019. PMID: 31608099 Free PMC article.
  • Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers.
    Ryu JY, Kim HU, Lee SY. Ryu JY, et al. Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):13996-14001. doi: 10.1073/pnas.1821905116. Epub 2019 Jun 20. Proc Natl Acad Sci U S A. 2019. PMID: 31221760 Free PMC article.
See all "Cited by" articles

Publication types

LinkOut - more resources