Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep;40(3):319-27.
doi: 10.1016/j.ceca.2006.04.009. Epub 2006 Jun 15.

Intestinal calcium waves coordinate a behavioral motor program in C. elegans

Affiliations

Intestinal calcium waves coordinate a behavioral motor program in C. elegans

Takayuki Teramoto et al. Cell Calcium. 2006 Sep.

Abstract

Periodic behavioral motor patterns are normally controlled by neural circuits, such as central pattern generators. We here report a novel mechanism of motor pattern generation by non-neural cells. The defecation motor program in Caenorhabditis elegans consists of three stereotyped motor steps with precise timing and this behavior has been studied as a model system of a ultradian biological clock [J.H. Thomas, Genetic analysis of defecation in C. elegans, Genetics 124 (1990) 855-872; D.W. Liu, J.H. Thomas, Regulation of a periodic motor program in C. elegans, J. Neurosci. 14 (1994) 1953-1962; K. Iwasaki, D.W. Liu, J.H. Thomas, Genes that control a temperature-compensated ultradian clock in Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA 92 (1995), 10317-10321]. It was previously implied that the inositol-1,4,5-trisphosphate (IP3) receptor in the intestine was necessary for this periodic behavior [P. Dal Santo, M.A. Logan, A.D. Chisholm, E.M. Jorgensen, The inositol trisphosphate receptor regulates a 50s behavioral rhythm in C. elegans, Cell 98 (1999) 757-767]. Therefore, we developed a new assay system to study a relationship between this behavioral timing and intestinal Ca(2+) dynamics. Using this assay system, we found that the timing between the first and second motor steps is coordinated by intercellular Ca(2+)-wave propagation in the intestine. Lack of the Ca(2+)-wave propagation correlated with no coordination of the motor steps in the CaMKII mutant. Also, when the Ca(2+)-wave propagation was blocked by the IP3 receptor inhibitor heparin at the mid-intestine in wild type, the second/third motor steps were eliminated, which phenocopied ablation of the motor neurons AVL and DVB. These observations suggest that an intestinal Ca(2+)-wave propagation governs the timing of neural activities that controls specific behavioral patterns in C. elegans.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources