Physiological responses to nordic walking, walking and jogging

Eur J Appl Physiol. 2006 Sep;98(1):56-61. doi: 10.1007/s00421-006-0242-5. Epub 2006 Jun 24.

Abstract

The goal of this study was to evaluate the physiological responses during incremental field tests (FT) in nordic walking (NW), walking (W) and jogging (J). Fifteen healthy middle-aged women participated in three FT. Heart rate (HR) and oxygen uptake (V(O)(2)) were monitored continuously by portable analyzers. Capillary blood lactate (La) was analyzed at rest and after every stage of the FT. The disciplines showed differences during stage 1.8 and 2.1 m s(-1) for V(O)(2) between NW and W (P < 0.05). The maximum value was measured at 1.8 m s(-1 )(8%). In accordance with La, V(CO)(2) was higher in NW compared with W during all stages (P < 0.05) and even higher in NW compared with J during 2.1 and 2.4 m s(-1). While there were higher HR for NW and W at 2.4 m s(-1) than in J (P < 0.01), there were increases for HR at fixed values of 2 (La2) and 4 (La4) mmol l(-1 )lactate for J compared with NW and W (P < 0.01). Although the speed of NW was slower than that of W at La2 and La4 (P < 0.05), there were no differences for the HR and the V(O)(2) Our results demonstrate that metabolic responses are a helpful instrument to assess the intensity during bipedal exercise. As NW speed at submaximal lactate levels is lower than in W and J, W and J test measures of HR and V(O)(2) are not suitable for NW training recommendations. Additionally, the V(O)(2) formed by performing NW is not as high as previously reported.

Publication types

  • Comparative Study
  • Randomized Controlled Trial

MeSH terms

  • Adult
  • Exercise Test / methods*
  • Female
  • Heart Rate / physiology*
  • Humans
  • Male
  • Oxygen Consumption / physiology*
  • Physical Endurance / physiology*
  • Physical Exertion / physiology*
  • Running / physiology*
  • Walking / physiology*