Transmitter interactions in the central cholinergic control of blood pressure regulation

Drug Metabol Drug Interact. 1991;9(1):49-76. doi: 10.1515/dmdi.1991.9.1.49.


There are at least five mechanisms by which the central nervous system regulates neural and humoral systems that control the blood pressure (BP). Particular attention has been paid to central cholinergic-adrenergic interactions in the regulation of BP. Physostigmine and other anticholinesterases which penetrate the blood-brain barrier, both carbamates and organophosphates, produce an increase of BP. This effect can be abolished by atropine, but not by methylatropine. The available evidence indicates that physostigmine and other AChE inhibitors initially produce an activation of central muscarinic receptors, which subsequently leads to an increase of the peripheral adrenergic activity. The hypertensive response to physostigmine is possible only if a functionally competent ChE is present in the brain. This effect of physostigmine is regularly associated with a dose-related increase in the neural activity in the preganglionic fibers of the cervical sympathetic nerve. BP rise after physostigmine is significantly less in immunosympathectomized animals and almost completely abolished after chemical sympathectomy. Physostigmine significantly increased the plasma concentration of catecholamines. After electrocoagulation of the locus coeruleus, not only did a significant decrease occur in the basic level of noradrenaline in plasma, but there was also a strong depression of the noradrenaline plasma response to physostigmine and immobilization. Physostigmine increased lipolysis and glycogenolysis, whereas neostigmine did not produce any change. Several directly acting cholinergic agonists alter the functions of the cardiovascular system when injected directly into the cerebral ventricular system, or directly into various brain regions. The most probable sites of action of AChE inhibitors and directly acting cholinergic agonists are the locus coeruleus, the nucleus tractus solitarii and the rostral ventrolateral medulla (RVLM). The primary activation of the cholinergic synapse is believed to take place in RVLM. Met-enkephalin, Leu-enkephalin and beta-endorphin, when applied exogenously, depress or even abolish the hypertensive effect of physostigmine. The same type of response was obtained after application of substances which inhibit the enkephalin-degrading enzymes (bestatin, phosphoramidon). Thus, the exogenous or endogenous enkephalins activate the opioid receptors in the brain and at the same time produce a depression of the cholinergic-adrenergic interaction in the central nervous system, which is a prerequisite for the hypertensive response to physostigmine. The functional role of the central cholinergic mechanisms in BP control under physiological conditions has not been established with certainty. These mechanisms might have a more significant role under pathological or homeostatic disturbances. For example, physostigmine showed a life-saving effect in acute hypovolemic shock in rabbits.

Publication types

  • Review

MeSH terms

  • Animals
  • Blood Pressure / drug effects
  • Blood Pressure / physiology*
  • Catecholamines / metabolism
  • Central Nervous System / physiology*
  • Cholinesterase Inhibitors / pharmacology
  • Neurotransmitter Agents / physiology*
  • Parasympathomimetics / pharmacology
  • Physostigmine / pharmacology


  • Catecholamines
  • Cholinesterase Inhibitors
  • Neurotransmitter Agents
  • Parasympathomimetics
  • Physostigmine