Missense mutations and evolutionary conservation of amino acids: evidence that many of the amino acids in factor IX function as "spacer" elements

Am J Hum Genet. 1991 Oct;49(4):820-38.


We report 31 point mutations in the factor IX gene and explore the relationship between the level of evolutionary conservation of an amino acid and the probability of a mutation causing hemophilia B. From our total sample of 125 hemophiliacs and from those reported by others, we identify 95 independent missense mutations, 94 of which occur at amino acids that are evolutionarily conserved in the available mammalian factor IX sequences. The likelihood of a missense mutation causing hemophilia B depends on whether the residue is also conserved in the factor IX-related proteases: factor VII, factor X, and protein C. Most of the possible missense mutations in generically conserved residues (i.e., those conserved in factor IX and in all the related proteases) should cause disease. In contrast, missense mutations in factor IX-specific residues (i.e., those conserved in human, cow, dog, and mouse factor IX but not in the related proteases) are sixfold less likely to cause disease. Missense mutations at nonconserved residues are 33-fold less likely to cause disease. At least three models are compatible with these observations. A comparison of sequence alignments from four and nine species of factor IX and an examination of the missense mutations occurring at CpG residues suggest a model in which most residues fall on opposite ends of a spectrum. In about 40% of residues, virtually any missense mutation in a minority of the residues will cause disease, while virtually no missense mutations will cause disease in most of the remaining residues. Thus, many of the residues in factor IX are spacers; that is, the main chains are presumably necessary to keep other amino acid interactions in register, but the nature of the side chain is unimportant.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Amino Acids / physiology
  • Animals
  • Binding Sites / genetics
  • Biological Evolution
  • Factor IX / chemistry
  • Factor IX / genetics*
  • Female
  • Haplotypes
  • Hemophilia B / genetics*
  • Humans
  • Male
  • Models, Genetic
  • Molecular Sequence Data
  • Mutation / genetics*
  • Polymorphism, Restriction Fragment Length
  • Protein Conformation
  • Repetitive Sequences, Nucleic Acid / genetics
  • Sequence Alignment


  • Amino Acids
  • Factor IX