CD20 is expressed strictly by B-cells and is ubiquitously expressed at high surface densities of malignant human B-cells. This suggests that CD20 may be a tumor target for immunotherapy of B-cell lymphomas. Rituximab, a chimeric monoclonal antibody directed against CD20, has been demonstrated to be an effective treatment for non-Hodgkin's lymphoma (NHL) and some autoimmune diseases. In the current study, we used the phage display technique to generate mimotopes that complemented the screening Ab Rituximab. A total of seven candidate mimotopes were isolated from a 12-mer peptide library from which one mimotope was conjugated to keyhole limpet hemocyanin (KLH) or tetanus toxoid (TT). The immunogenicity of the two vaccines generated was examined in BALB/c mice. Sera from the vaccinated mice demonstrated high-titer specific antibodies to the mimotope conjugates. Antibody binding to native CD20 and Ab-mediated cytotoxicity (CDC, complement-dependent cytotoxicity) were also analyzed. Our data suggest that a Rituximab mimotope may be a useful tool for the construction of a functional vaccine to treat B-cell malignancy as well as some CD20 related autoimmune disorders.