An opposite role for tau in circadian rhythms revealed by mathematical modeling

Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10618-23. doi: 10.1073/pnas.0604511103. Epub 2006 Jul 3.

Abstract

Biological clocks with a period of approximately 24 h (circadian) exist in most organisms and time a variety of functions, including sleep-wake cycles, hormone release, bioluminescence, and core body temperature fluctuations. Much of our understanding of the clock mechanism comes from the identification of specific mutations that affect circadian behavior. A widely studied mutation in casein kinase I (CKI), the CKIepsilon(tau) mutant, has been shown to cause a loss of kinase function in vitro, but it has been difficult to reconcile this loss of function with the current model of circadian clock function. Here we show that mathematical modeling predicts the opposite, that the kinase mutant CKIepsilon(tau) increases kinase activity, and we verify this prediction experimentally. CKIepsilon(tau) is a highly specific gain-of-function mutation that increases the in vivo phosphorylation and degradation of the circadian regulators PER1 and PER2. These findings experimentally validate a mathematical modeling approach to a complex biological function, clarify the role of CKI in the clock, and demonstrate that a specific mutation can be both a gain and a loss of function depending on the substrate.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Validation Study

MeSH terms

  • Animals
  • Casein Kinase 1 epsilon / genetics
  • Casein Kinase 1 epsilon / metabolism
  • Casein Kinase 1 epsilon / physiology*
  • Casein Kinase I / genetics
  • Casein Kinase I / metabolism
  • Casein Kinase I / physiology*
  • Cell Cycle Proteins
  • Cell Line
  • Circadian Rhythm / physiology*
  • Humans
  • Mice
  • Models, Biological*
  • Mutation
  • NIH 3T3 Cells
  • Nuclear Proteins / genetics
  • Nuclear Proteins / metabolism
  • Period Circadian Proteins
  • Phosphorylation
  • Transcription Factors / genetics
  • Transcription Factors / metabolism

Substances

  • Cell Cycle Proteins
  • Nuclear Proteins
  • PER1 protein, human
  • PER2 protein, human
  • Per1 protein, mouse
  • Per2 protein, mouse
  • Period Circadian Proteins
  • Transcription Factors
  • Casein Kinase 1 epsilon
  • Casein Kinase I