Shuffling of discrete tRNASer regions reveals differently utilized identity elements in yeast and methanogenic archaea

J Mol Biol. 2006 Aug 4;361(1):128-39. doi: 10.1016/j.jmb.2006.06.008. Epub 2006 Jun 21.

Abstract

Seryl-tRNA synthetases (SerRSs) from methanogenic archaea possess distinct evolutionary origin and show minimal sequence similarity with counterparts from bacteria, eukaryotes and other archaea. Here we show that SerRS from yeast Saccharomyces cerevisiae and archaeon Methanococcus maripaludis (ScSerRS and MmSerRS, respectively) display significantly different ability to serylate heterologous tRNA(Ser). Recognition in yeast was shown to be more stringent than in archaeon. While cross-aminoacylation of M. maripaludis tRNA(Ser) (MmtRNA(Ser)) by yeast SerRS barely occurs, yeast tRNA(Ser) (SctRNA(Ser)) was shown to be a good substrate for heterologous MmSerRS. To investigate the contribution of different tRNA regions for the recognition by yeast and archaeal SerRS, chimeric tRNAs bearing separated domains of SctRNA(Ser) in MmtRNA(Ser) framework were produced by in vitro transcription and subjected to kinetic and gel mobility shift analysis with both enzymes. Generally, the recognition in M. maripaludis seems to be relatively relaxed toward tertiary elements of tRNA(Ser) structure and relies on the direct recognition of identity nucleotides. On the other hand, expression of tRNA(Ser) identity elements in yeast seems to be more sensitive toward surrounding sequence context. In both systems variable arm of tRNA was recognized as a major identity region with a strong influence on SerRS:tRNA binding. Acceptor domain of SctRNA(Ser) was also shown to be important for serylation in yeast. We propose that cognate interactions between N-terminal domain of yeast SerRS and variable region of SctRNA(Ser) place the acceptor stem into the enzyme's active site and lead to increased affinity toward serine and efficient serylation of tRNA. The same effect was not observed in M. maripaludis. Unlike its yeast counterpart, MmSerRS forms only one type of covalent complex with MmtRNA(Ser), regardless of the tRNA/SerRS molar ratio. Stoichiometry of the complex, one tRNA per dimeric SerRS, was revealed by mass spectrometry. Our studies indicate that different SerRS:tRNA recognition mode is utilized by these two systems.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Base Sequence
  • DNA Shuffling*
  • Methanococcus / genetics*
  • Molecular Sequence Data
  • RNA, Transfer, Ser / genetics*
  • Recombination, Genetic*
  • Saccharomyces cerevisiae / genetics*

Substances

  • RNA, Transfer, Ser