Streamlining and simplification of microbial genome architecture
- PMID: 16824010
- DOI: 10.1146/annurev.micro.60.080805.142300
Streamlining and simplification of microbial genome architecture
Abstract
The genomes of unicellular species, particularly prokaryotes, are greatly reduced in size and simplified in terms of gene structure relative to those of multicellular eukaryotes. Arguments proposed to explain this disparity include selection for metabolic efficiency and elevated rates of deletion in microbes, but the evidence in support of these hypotheses is at best equivocal. An alternative explanation based on fundamental population-genetic principles is proposed here. By increasing the mutational target sizes of associated genes, most forms of nonfunctional DNA are opposed by weak selection. Free-living microbial species have elevated effective population sizes, and the consequent reduction in the power of random genetic drift appears to be sufficient to enable natural selection to inhibit the accumulation of excess DNA. This hypothesis provides a potentially unifying explanation for the continuity in genomic scaling from prokaryotes to multicellular eukaryotes, the divergent patterns of mitochondrial evolution in animals and land plants, and various aspects of genomic modification in microbial endosymbionts.
Similar articles
-
Mutation pressure and the evolution of organelle genomic architecture.Science. 2006 Mar 24;311(5768):1727-30. doi: 10.1126/science.1118884. Science. 2006. PMID: 16556832 Review.
-
Drift-barrier hypothesis and mutation-rate evolution.Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18488-92. doi: 10.1073/pnas.1216223109. Epub 2012 Oct 17. Proc Natl Acad Sci U S A. 2012. PMID: 23077252 Free PMC article.
-
The repatterning of eukaryotic genomes by random genetic drift.Annu Rev Genomics Hum Genet. 2011;12:347-66. doi: 10.1146/annurev-genom-082410-101412. Annu Rev Genomics Hum Genet. 2011. PMID: 21756106 Free PMC article. Review.
-
Endosymbiont evolution: predictions from theory and surprises from genomes.Ann N Y Acad Sci. 2015 Dec;1360(1):16-35. doi: 10.1111/nyas.12740. Epub 2015 Apr 9. Ann N Y Acad Sci. 2015. PMID: 25866055 Free PMC article. Review.
-
The mutational hazard hypothesis of organelle genome evolution: 10 years on.Mol Ecol. 2016 Aug;25(16):3769-75. doi: 10.1111/mec.13742. Epub 2016 Jul 29. Mol Ecol. 2016. PMID: 27357487
Cited by
-
Evolution of variation in presence and absence of genes in bacterial pathways.BMC Evol Biol. 2012 Apr 20;12:55. doi: 10.1186/1471-2148-12-55. BMC Evol Biol. 2012. PMID: 22520826 Free PMC article.
-
Evolution of Genome Size in Asexual Digital Organisms.Sci Rep. 2016 May 16;6:25786. doi: 10.1038/srep25786. Sci Rep. 2016. PMID: 27181837 Free PMC article.
-
Inevitability of Genetic Parasites.Genome Biol Evol. 2016 Sep 26;8(9):2856-2869. doi: 10.1093/gbe/evw193. Genome Biol Evol. 2016. PMID: 27503291 Free PMC article.
-
Predicting the Stability of Homologous Gene Duplications in a Plant RNA Virus.Genome Biol Evol. 2016 Oct 12;8(9):3065-3082. doi: 10.1093/gbe/evw219. Genome Biol Evol. 2016. PMID: 27604880 Free PMC article.
-
Implications of streamlining theory for microbial ecology.ISME J. 2014 Aug;8(8):1553-65. doi: 10.1038/ismej.2014.60. Epub 2014 Apr 17. ISME J. 2014. PMID: 24739623 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
