Water and heat balance during flight in the rose-colored starling (Sturnus roseus)

Physiol Biochem Zool. Jul-Aug 2006;79(4):763-74. doi: 10.1086/504610. Epub 2006 May 19.


Water imbalance during flight is considered to be a potentially limiting factor for flight ranges in migrating birds, but empirical data are scarce. We studied flights under controlled ambient conditions with rose-colored starlings in a wind tunnel. In one experiment, we measured water fluxes with stable isotopes at a range of flight speeds (9-14 m s(-1)) at constant temperature (15 degrees C). In a second experiment, we measured evaporation rates at variable ambient temperatures (Ta = 5 deg -27 deg C) but constant speed (12 m s(-1)). During all flights, the birds experienced a net water loss. On average, water influx was 0.98 g h(-1) (SD = 0.16; n = 8), and water efflux was 1.29 g h(-1) (SD = 0.14; n = 8), irrespective of flight speed. Evaporation was related to temperature in a biphasic pattern. At temperatures below 18.2 degrees C, net evaporation was constant at 0.36 g h(-1) (SD = 0.18; n = 10), rising at higher temperatures with a slope of 0.11 per degree to about 1.5 g h(-1) at 27 degrees C. We calculated the relative proportion of dry and evaporative heat loss during flight. Evaporative heat loss at Ta < 18.2 deg C was 14% of total heat production during flight, and dry heat loss accounted for 84%. At higher temperatures, evaporative heat loss increased linearly with T(a) to about 25% at 27 degrees C. Our data suggest that for prolonged flights, rose-colored starlings should adopt behavioral water-saving strategies and that they cannot complete their annual migration without stopovers to replenish their water reserves.

MeSH terms

  • Animals
  • Body Temperature Regulation / physiology*
  • Body Water / metabolism*
  • Flight, Animal / physiology*
  • Hot Temperature*
  • Starlings / physiology*