Wound healing in the biliary tree of liver allografts

Cell Transplant. 2006;15 Suppl 1:S57-65. doi: 10.3727/000000006783982386.

Abstract

An increasing need for liver transplantation requires evaluation and triage of organs harvested from "extended criteria" donors. Although there is currently no widely accepted definition, most would agree that "extended criteria" includes organs donated by individuals that are old (>65 years), obese, infected with HBV or HCV, non-heart beating (NHBD), or had an unstable blood pressure before harvesting or the organ experienced a long cold ischemic time. These organs carry a statistical risk of dysfunction early after transplantation, but in the majority of recipients, hepatic parenchymal function recovers. Later, however, a small but significant percentage of extended criteria donors develop biliary strictures within several months after transplantation. The strictures occur primarily because of preservation injury that leads to "ischemic cholangitis" or deep wounding of the bile duct wall. Subsequent partial wound healing and wound contraction, but failed restitution of the biliary epithelial cell (BEC) lining, result in biliary tract strictures that cause progressive biliary fibrosis, increased morbidity, and decreased organ half-life. Better understanding of the pathophysiologic mechanisms that lead to biliary strictures in extended criteria donors provides an ideal proving ground for regenerative medicine; it also can provide insights into other diseases, such as extrahepatic biliary atresia and primary sclerosing cholangitis, that likely share certain pathogenic mechanisms. Possible points of therapeutic intervention include limiting cold and warm ischemic times, donor and/or donor organ treatment, ex vivo, to minimize the ischemic/preservation injury, maximize blood flow after transplantation, promote BEC wound healing, and limit myofibroblasts activation and proliferation in the bile duct wall. The pathobiology of biliary wound healing and therapeutic potential of interleukin-6 (IL-6) are highlighted.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Biliary Tract / growth & development*
  • Humans
  • Liver Transplantation*
  • Transplantation, Homologous
  • Wound Healing*