Thermal ecology of the neotropical army ant Eciton burchellii

Ecol Appl. 2006 Jun;16(3):913-22. doi: 10.1890/1051-0761(2006)016[0913:teotna]2.0.co;2.

Abstract

I explored the thermal ecology of Eciton burchellii, a New World army ant, in primary forest and forest fragments in the Atlantic lowlands of Costa Rica in 2002 and 2003. My primary objective was to determine whether high surface temperatures in pastures surrounding forest fragments posed a thermal barrier to ant colonies within those fragments; secondarily, I assessed whether thermal gradients within continuous moist forest were sufficient to elicit avoidance reactions from foraging colonies. E. burchellii colonies in forest fragments avoided entering open pasture in full sun (51.3 degrees C) on 100% of all edge interactions; however, edges were readily crossed where artificial shaded areas had previously been installed. Ant raids in primary forest avoided artificially established temperatures >43 degrees C but tolerated 45.5 degrees C in the presence of prey baits. Captive ants held at 43 degrees C survived 18.5 min; at temperatures of 51.3 degrees C survival time was only 2.8 min. Ants running on established foraging trails increased running velocity by 18% when substrate temperature was raised from 28.4 degrees to 38.0 degrees C, and they abandoned trails at temperatures >43 degrees C. The standard deviation (s) of temperatures on active raid trails in continuous forest was 2.13 degrees C, while nearby systematic sampling revealed a greater background standard deviation of 4.13 degrees C. E. burchellii colonies in this region appear to be living surprisingly near their upper limits of thermal tolerance. The heat of open pastures alone is sufficient to prevent their exiting forest fragments, or entering similarly hot areas within continuous forest. Shaded vegetative corridors are sufficient to permit mobility between isolated fragments, and their preservation should be encouraged. Despite views that tropical lowland moist forests have an essentially homogenous microclimate, army ants appear to avoid local hot spots on the forest floor, steering daily foraging trails to follow cooler routes than would be expected by chance. As deforestation remakes tropical landscapes worldwide, it is important to consider the thermal consequences of these actions and their effect on keystone organisms such as army ants. Changes in global climate patterns are likely to affect even evergreen tropical systems whose organisms may be sensitive to finer microclimatic variation than previously suspected.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Ants / physiology*
  • Ecology*
  • Feeding Behavior
  • Temperature