Nonlinear optical properties of tetrapyrazinoporphyrazinato indium chloride complexes due to excited-state absorption processes

J Phys Chem B. 2005 Jul 7;109(26):12691-6. doi: 10.1021/jp050519n.

Abstract

The multiphoton absorption properties of the axially substituted tetrapyrazinotetraazaporphyrinato complex Pyz(4)TAPInCl (1) are reported and interpreted. In particular, the nonlinear optical transmission of the complex and the excited states involved in the nonlinear absorption have been determined at the frequency of the second harmonic generation of a Nd:YAG laser in the nanosecond time regime. Pyz(4)TAPInCl has an excited-state absorption cross section larger than its ground state in the 460-540 nm spectral region, and it shows an optical limiting (OL) behavior at 532 nm, which derives from a sequential two-photon absorption with a larger absorption cross section of the excited triplet state with respect to the ground state. It results that the absorption cross section of 1 in the excited triplet state is 7.8 x 10(-18) cm(2) vs 0.9 x 10(-18) cm(2) of the ground state at the wavelength of OL analysis.