Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug 18;109(32):15531-41.
doi: 10.1021/jp050121r.

Energy Ranking of Molecular Crystals Using Density Functional Theory Calculations and an Empirical Van Der Waals Correction

Affiliations

Energy Ranking of Molecular Crystals Using Density Functional Theory Calculations and an Empirical Van Der Waals Correction

Marcus A Neumann et al. J Phys Chem B. .

Abstract

By combination of high level density functional theory (DFT) calculations with an empirical van der Waals correction, a hybrid method has been designed and parametrized that provides unprecedented accuracy for the structure optimization and the energy ranking of molecular crystals. All DFT calculations are carried out using the VASP program. The van der Waals correction is expressed as the sum over atom-atom pair potentials with each pair potential for two atoms A and B being the product of an asymptotic C(6,A,B)/r(6) term and a damping function d(A,B)(r). Empirical parameters are provided for the elements H, C, N, O, F, Cl, and S. Following Wu and Yang, the C(6) coefficients have been determined by least-squares fitting to molecular C(6) coefficients derived by Meath and co-workers from dipole oscillator strength distributions. The damping functions d(A,B)(r) guarantee the crossover from the asymptotic C(6,A,B)/r(6) behavior at large interatomic distances to a constant interaction energy at short distances. The careful parametrization of the damping functions is of crucial importance to obtain the correct balance between the DFT part of the lattice energy and the contribution from the empirical van der Waals correction. The damping functions have been adjusted to yield the best possible agreement between the unit cells of a set of experimental low temperature crystal structures and their counterparts obtained by lattice energy optimization using the hybrid method. On average, the experimental and the calculated unit cell lengths deviate by 1%. To assess the performance of the hybrid method with respect to the lattice energy ranking of molecular crystals, various crystal packings of ethane, ethylene, acetylene, methanol, acetic acid, and urea have been generated with Accelrys' Polymorph Predictor in a first step and optimized with the hybrid method in a second step. In five out of six cases, the experimentally observed low-temperature crystal structure corresponds to the most stable calculated structure.

Similar articles

See all similar articles

Cited by 17 articles

  • Reliable and practical computational description of molecular crystal polymorphs.
    Hoja J, Ko HY, Neumann MA, Car R, DiStasio RA Jr, Tkatchenko A. Hoja J, et al. Sci Adv. 2019 Jan 11;5(1):eaau3338. doi: 10.1126/sciadv.aau3338. eCollection 2019 Jan. Sci Adv. 2019. PMID: 30746448 Free PMC article.
  • Evaluating the Energetic Driving Force for Cocrystal Formation.
    Taylor CR, Day GM. Taylor CR, et al. Cryst Growth Des. 2018 Feb 7;18(2):892-904. doi: 10.1021/acs.cgd.7b01375. Epub 2017 Dec 13. Cryst Growth Des. 2018. PMID: 29445316 Free PMC article.
  • van der Waals dispersion interactions in molecular materials: beyond pairwise additivity.
    Reilly AM, Tkatchenko A. Reilly AM, et al. Chem Sci. 2015 Jun 1;6(6):3289-3301. doi: 10.1039/c5sc00410a. Epub 2015 Mar 30. Chem Sci. 2015. PMID: 28757994 Free PMC article.
  • The application of tailor-made force fields and molecular dynamics for NMR crystallography: a case study of free base cocaine.
    Li X, Neumann MA, van de Streek J. Li X, et al. IUCrJ. 2017 Feb 15;4(Pt 2):175-184. doi: 10.1107/S2052252517001415. eCollection 2017 Mar 1. IUCrJ. 2017. PMID: 28250956 Free PMC article.
  • Report on the sixth blind test of organic crystal structure prediction methods.
    Reilly AM, Cooper RI, Adjiman CS, Bhattacharya S, Boese AD, Brandenburg JG, Bygrave PJ, Bylsma R, Campbell JE, Car R, Case DH, Chadha R, Cole JC, Cosburn K, Cuppen HM, Curtis F, Day GM, DiStasio RA Jr, Dzyabchenko A, van Eijck BP, Elking DM, van den Ende JA, Facelli JC, Ferraro MB, Fusti-Molnar L, Gatsiou CA, Gee TS, de Gelder R, Ghiringhelli LM, Goto H, Grimme S, Guo R, Hofmann DW, Hoja J, Hylton RK, Iuzzolino L, Jankiewicz W, de Jong DT, Kendrick J, de Klerk NJ, Ko HY, Kuleshova LN, Li X, Lohani S, Leusen FJ, Lund AM, Lv J, Ma Y, Marom N, Masunov AE, McCabe P, McMahon DP, Meekes H, Metz MP, Misquitta AJ, Mohamed S, Monserrat B, Needs RJ, Neumann MA, Nyman J, Obata S, Oberhofer H, Oganov AR, Orendt AM, Pagola GI, Pantelides CC, Pickard CJ, Podeszwa R, Price LS, Price SL, Pulido A, Read MG, Reuter K, Schneider E, Schober C, Shields GP, Singh P, Sugden IJ, Szalewicz K, Taylor CR, Tkatchenko A, Tuckerman ME, Vacarro F, Vasileiadis M, Vazquez-Mayagoitia A, Vogt L, Wang Y, Watson RE, de Wijs GA, Yang J, Zhu Q, Groom CR. Reilly AM, et al. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2016 Aug 1;72(Pt 4):439-59. doi: 10.1107/S2052520616007447. Epub 2016 Aug 1. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2016. PMID: 27484368 Free PMC article.
See all "Cited by" articles

LinkOut - more resources

Feedback