Properties of adaptive walks on uncorrelated landscapes under strong selection and weak mutation

J Theor Biol. 2006 Nov 7;243(1):114-20. doi: 10.1016/j.jtbi.2006.06.008. Epub 2006 Jun 13.


We examine properties of adaptive walks on uncorrelated (i.e. random) fitness landscapes starting from moderately fit genotypes under strong selection weak mutation. As an extension of Orr's model for a single step in an adaptive walk under these conditions, we show that the fitness rank of the dominant genotype in a population after the fixation of a beneficial mutation is, on average, (i+6)/4, where i is the fitness rank of the starting genotype. This accounts for the change in rank due to acquiring a new set of single-mutation neighbors after fixing a new allele through natural selection. Under this scenario, adaptive walks can be modeled as a simple Markov chain on the space of possible fitness ranks with an absorbing state at i = 1, from which no beneficial mutations are accessible. We find that these walks are typically short and are often completed in a single step when starting from a moderately fit genotype. As in Orr's original model, these results are insensitive to both the distribution of fitness effects and most biological details of the system under consideration.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adaptation, Biological / genetics*
  • Animals
  • Evolution, Molecular
  • Genotype
  • Models, Genetic*
  • Mutation*
  • Selection, Genetic*