Aspirin-treated human DCs up-regulate ILT-3 and induce hyporesponsiveness and regulatory activity in responder T cells

Am J Transplant. 2006 Sep;6(9):2046-59. doi: 10.1111/j.1600-6143.2006.01450.x. Epub 2006 Jul 25.


Mature dendritic cells (mDCs) are potent antigen presenting cells, but immature DCs (iDCs) have been shown to have reduced antigen stimulatory capacity. Different strategies have been investigated to augment the tolerogenic capacity of dendritic cells (DCs). We demonstrate that in aspirin-treated human DCs, there is reduced expression of CD1a, HLA-DR and CD86, up-regulation of ILT-3 expression and marginal increases in PDL-1. Aspirin-treated DCs are partially resistant to phenotypic changes following maturational stimuli, such as lipopolysaccharide (LPS) or TNFalpha, IL-1alpha and PGE2. Aspirin-treated DCs demonstrate normal endocytic function, but have a reduced ability to stimulate allogeneic T cells, which is comparable to iDCs. Furthermore, they induce hyporesponsiveness and regulatory activity in responder naïve and memory T cells; for naïve T cells this is achieved more quickly and efficiently than with iDCs. We investigated the mechanism of this regulatory activity and found that both cell-cell contact and inhibitory cytokine activity are involved, although no one cytokine predominates in importance. Blocking ILT-3 or IL-12 does not diminish the capacity of these DCs to induce regulation or Foxp3 expression on the regulatory T cells. Results demonstrate that aspirin-treated DCs display tolerogenic potential, which is of interest in their therapeutic potential in reducing chronic allograft rejection.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Inflammatory Agents, Non-Steroidal / pharmacology*
  • Antigen Presentation
  • Aspirin / pharmacology*
  • Dendritic Cells / drug effects*
  • Dendritic Cells / metabolism
  • Humans
  • Interleukin-12 / metabolism
  • Lipopolysaccharides / pharmacology
  • Lymphocyte Activation
  • Membrane Glycoproteins
  • Receptors, Cell Surface / metabolism*
  • Receptors, Immunologic
  • T-Lymphocytes / immunology
  • T-Lymphocytes, Regulatory / immunology*
  • Up-Regulation


  • Anti-Inflammatory Agents, Non-Steroidal
  • LILRB4 protein, human
  • Lipopolysaccharides
  • Membrane Glycoproteins
  • Receptors, Cell Surface
  • Receptors, Immunologic
  • Interleukin-12
  • Aspirin