Parkinson's disease (PD) and related disorders are subcortical degenerations targeting the nigrostriatal dopaminergic system and basal ganglia. Traditionally, MRI has been used to detect structural and positron emission tomography and single emission computed tomography functional neurochemical and metabolic changes associated with these disorders. Recently, advances in diffusion-weighted MRI, ultrasonography, and radiotracer-based imaging have yielded greater sensitivity for revealing structural change and allowed detection of changes in brain dopamine levels after levodopa and during behavioral tasks. This review focuses on these recent advances in neuroimaging technology and their use for the diagnosis and assessment of PD and other parkinsonian disorders.
Copyright 2006 Movement Disorder Society.