Background: Alcohol dependence is characterized by excessive alcohol consumption, loss of control over intake, and the presence of a withdrawal syndrome, which includes both motivational and physical symptoms. Similar to human alcoholics, ethanol-dependent animals display enhanced anxiety-like behaviors and enhanced ethanol self-administration during withdrawal, effects hypothesized to result from a dysregulation of corticotropin-releasing factor (CRF) stress systems. Here, we used an animal model of ethanol dependence to test the effects of CRF(1) receptor antagonists on excessive ethanol self-administration in dependent rats.
Methods: Wistar rats, trained to orally self-administer ethanol, were exposed intermittently to ethanol vapors to induce ethanol dependence. Nondependent animals were exposed to control air. Following a 2-hour period of withdrawal, dependent and nondependent animals were systemically administered antalarmin, MJL-1-109-2, or R121919 (CRF(1) antagonists) and ethanol self-administration was measured.
Results: The nonpeptide, small molecule CRF(1) antagonists selectively reduced excessive self-administration of ethanol in dependent animals during acute withdrawal. The antagonists had no effect on ethanol self-administration in nondependent rats.
Conclusions: These data demonstrate that CRF(1) receptors play an important role in mediating excessive ethanol self-administration in dependent rats, with no effect in nondependent rats. CRF(1) antagonists may be exciting new pharmacotherapeutic targets for the treatment of alcoholism in humans.