Brain atrophy in pure and complicated hereditary spastic paraparesis: a quantitative 3D MRI study

Eur J Neurol. 2006 Aug;13(8):880-6. doi: 10.1111/j.1468-1331.2006.01380.x.

Abstract

Hereditary spastic paraparesis (HSP) is a heterogeneous group of neurodegenerative disorders with progressive lower limb spasticity, categorized into pure (p-HSP) and complicated forms (c-HSP). The purpose of this study was to evaluate if brain volumes in HSP were altered compared with a control population. Brain volumes were determined in patients suffering from HSP, including both p-HSP (n = 21) and c-HSP type (n = 12), and 30 age-matched healthy controls, using brain parenchymal fractions (BPF) calculated from 3D MRI data in an observer-independent procedure. In addition, the tissue segments of grey and white matter were analysed separately. In HSP patients, BPF were significantly reduced compared with controls both for the whole patient group (P < 0.001) and for both subgroups, indicating considerable brain atrophy. In contrast to controls who showed a decline of brain volumes with age, this physiological phenomenon was less pronounced in HSP. Therefore, global brain parenchyma reduction, involving both grey and white matter, seems to be a feature in both subtypes of HSP. Atrophy was more pronounced in c-HSP, consistent with the more severe phenotype including extramotor involvement. Thus, global brain atrophy, detected by MRI-based brain volume quantification, is a biological marker in HSP subtypes.

Publication types

  • Comparative Study

MeSH terms

  • Adult
  • Age Factors
  • Atrophy / pathology
  • Brain / pathology*
  • Female
  • Humans
  • Imaging, Three-Dimensional / methods*
  • Male
  • Middle Aged
  • Spastic Paraplegia, Hereditary / pathology*