Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Sep;15(9):705-30.
doi: 10.1111/j.1600-0625.2006.00476.x.

Dioxin-induced chloracne--reconstructing the cellular and molecular mechanisms of a classic environmental disease

Affiliations
Review

Dioxin-induced chloracne--reconstructing the cellular and molecular mechanisms of a classic environmental disease

Andrey A Panteleyev et al. Exp Dermatol. 2006 Sep.

Abstract

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is among the most toxic pollutants known to date that serves as a prototype for a group of halogenated hydrocarbon compounds characterized by extraordinary environmental persistence and unique ability to concentrate in animal and human tissues. TCDD can elicit a complex array of pleiotropic adverse effects in humans, although chloracne, a specific type of acne-like skin disease, is the only consistent manifestation of dioxin intoxication, thus representing a 'hallmark' of TCDD exposure. Chloracne is considered to be one of the most specific and sensitive biomarkers of TCDD intoxication that allows clinical and epidemiological evaluation of exposure level at threshold doses. The specific cellular and molecular mechanisms involved in pathogenesis of chloracne are still unknown. In this review, we summarize the available clinical data on chloracne and recent progress in understanding the role of the dioxin-dependent pathway in the control of gene transcription and discuss molecular and cellular events potentially involved in chloracne pathogenesis. We propose that the dioxin-induced activation of skin stem cells and a shift in differentiation commitment of their progeny may represent a major mechanism of chloracne development.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources