Record of mid-Archaean Subduction From Metamorphism in the Barberton Terrain, South Africa

Nature. 2006 Aug 3;442(7102):559-62. doi: 10.1038/nature04972.

Abstract

Although plate tectonics is the central geological process of the modern Earth, its form and existence during the Archaean era (4.0-2.5 Gyr ago) are disputed. The existence of subduction during this time is particularly controversial because characteristic subduction-related mineral assemblages, typically documenting apparent geothermal gradients of 15 degrees C km(-1) or less, have not yet been recorded from in situ Archaean rocks (the lowest recorded apparent geothermal gradients are greater than 25 degrees C km(-1)). Despite this absence from the rock record, low Archaean geothermal gradients are suggested by eclogitic nodules in kimberlites and circumstantial evidence for subduction processes, including possible accretion-related structures, has been reported in Archaean terrains. The lack of spatially and temporally well-constrained high-pressure, low-temperature metamorphism continues, however, to cast doubt on the relevance of subduction-driven tectonics during the first 1.5 Gyr of the Earth's history. Here we report garnet-albite-bearing mineral assemblages that record pressures of 1.2-1.5 GPa at temperatures of 600-650 degrees C from supracrustal amphibolites from the mid-Archaean Barberton granitoid-greenstone terrain. These conditions point to apparent geothermal gradients of 12-15 degrees C-similar to those found in recent subduction zones-that coincided with the main phase of terrane accretion in the structurally overlying Barberton greenstone belt. These high-pressure, low-temperature conditions represent metamorphic evidence for cold and strong lithosphere, as well as subduction-driven tectonic processes, during the evolution of the early Earth.