Matrix formalism to describe functional states of transcriptional regulatory systems

PLoS Comput Biol. 2006 Aug 11;2(8):e101. doi: 10.1371/journal.pcbi.0020101.

Abstract

Complex regulatory networks control the transcription state of a genome. These transcriptional regulatory networks (TRNs) have been mathematically described using a Boolean formalism, in which the state of a gene is represented as either transcribed or not transcribed in response to regulatory signals. The Boolean formalism results in a series of regulatory rules for the individual genes of a TRN that in turn can be used to link environmental cues to the transcription state of a genome, thereby forming a complete transcriptional regulatory system (TRS). Herein, we develop a formalism that represents such a set of regulatory rules in a matrix form. Matrix formalism allows for the systemic characterization of the properties of a TRS and facilitates the computation of the transcriptional state of the genome under any given set of environmental conditions. Additionally, it provides a means to incorporate mechanistic detail of a TRS as it becomes available. In this study, the regulatory network matrix, R, for a prototypic TRS is characterized and the fundamental subspaces of this matrix are described. We illustrate how the matrix representation of a TRS coupled with its environment (R*) allows for a sampling of all possible expression states of a given network, and furthermore, how the fundamental subspaces of the matrix provide a way to study key TRS features and may assist in experimental design.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computational Biology / methods*
  • Escherichia coli / genetics
  • Gene Expression Regulation*
  • Genome / genetics*
  • Genomics
  • Lac Operon / genetics
  • Models, Genetic*
  • Transcription, Genetic / genetics*