Efferent-mediated control of basilar membrane motion
- PMID: 16901947
- PMCID: PMC1995651
- DOI: 10.1113/jphysiol.2006.114991
Efferent-mediated control of basilar membrane motion
Abstract
Medial olivocochlear efferent (MOCE) neurones innervate the outer hair cells (OHCs) of the mammalian cochlea, and convey signals that are capable of controlling the sensitivity of the peripheral auditory system in a frequency-specific manner. Recent methodological developments have allowed the effects of the MOCE system to be observed in vivo at the level of the basilar membrane (BM). These observations have confirmed earlier theories that at least some of the MOCE's effects are mediated via the cochlea's mechanics, with the OHCs acting as the mechanical effectors. However, the new observations have also provided some unexpected twists: apparently, the MOCEs can enhance the BM's responses to some sounds while inhibiting its responses to others, and they can alter the BM's response to a single sound using at least two separate mechanisms. Such observations put new constraints on the way in which the cochlea's mechanics, and the OHCs in particular, are thought to operate.
Figures
Similar articles
-
Separate mechanical processes underlie fast and slow effects of medial olivocochlear efferent activity.J Physiol. 2003 Apr 1;548(Pt 1):307-12. doi: 10.1113/jphysiol.2003.039081. Epub 2003 Feb 28. J Physiol. 2003. PMID: 12611913 Free PMC article.
-
Medial olivocochlear efferent inhibition of basilar-membrane responses to clicks: evidence for two modes of cochlear mechanical excitation.J Acoust Soc Am. 2008 Aug;124(2):1080-92. doi: 10.1121/1.2949435. J Acoust Soc Am. 2008. PMID: 18681598 Free PMC article.
-
The cochlea--new insights into the conversion of sound into electrical signals.J Physiol. 2006 Oct 1;576(Pt 1):3-5. doi: 10.1113/jphysiol.2006.118927. Epub 2006 Aug 17. J Physiol. 2006. PMID: 16916902 Free PMC article. No abstract available.
-
Compression, adaptation and efferent control in a revised outer hair cell functional model.Med Eng Phys. 2005 Nov;27(9):780-9. doi: 10.1016/j.medengphy.2005.03.002. Epub 2005 Apr 18. Med Eng Phys. 2005. PMID: 16171738 Review.
-
Active hair bundle movements in auditory hair cells.J Physiol. 2006 Oct 1;576(Pt 1):29-36. doi: 10.1113/jphysiol.2006.115949. Epub 2006 Aug 3. J Physiol. 2006. PMID: 16887874 Free PMC article. Review.
Cited by
-
Quantifying the Impact of Auditory Deafferentation on Speech Perception.Trends Hear. 2024 Jan-Dec;28:23312165241227818. doi: 10.1177/23312165241227818. Trends Hear. 2024. PMID: 38291713 Free PMC article.
-
Parametric information about eye movements is sent to the ears.Proc Natl Acad Sci U S A. 2023 Nov 28;120(48):e2303562120. doi: 10.1073/pnas.2303562120. Epub 2023 Nov 21. Proc Natl Acad Sci U S A. 2023. PMID: 37988462 Free PMC article.
-
Auditory brainstem mechanisms likely compensate for self-imposed peripheral inhibition.Sci Rep. 2023 Aug 4;13(1):12693. doi: 10.1038/s41598-023-39850-8. Sci Rep. 2023. PMID: 37542191 Free PMC article.
-
The effects of broadband elicitor duration on a psychoacoustic measure of cochlear gain reduction.J Acoust Soc Am. 2023 Apr 1;153(4):2482. doi: 10.1121/10.0017925. J Acoust Soc Am. 2023. PMID: 37092950
-
Middle ear muscle and medial olivocochlear activity inferred from individual human ears via cochlear potentials.J Acoust Soc Am. 2023 Mar;153(3):1723. doi: 10.1121/10.0017604. J Acoust Soc Am. 2023. PMID: 37002081 Free PMC article.
References
-
- Allen JB. Modeling the noise damaged cochlea. In: Dallos P, Geisler CD, Mathews JW, Ruggero MA, Steele CR, editors. The Mechanics and Biophysics of Hearing. Vol. 87. Berlin: Springer-Verlag; 1990. pp. 324–332.
-
- Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y. Evoked mechanical responses of isolated cochlear outer hair cells. Science. 1985;227:194–196. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources