Flow Fingerprinting Fecal Pollution and Suspended Solids in Stormwater Runoff From an Urban Coastal Watershed

Environ Sci Technol. 2006 Jul 15;40(14):4435-41. doi: 10.1021/es060701h.

Abstract

Field studies were conducted to characterize the concentration vs streamflow relationships (or "flow fingerprints") of fecal pollution and suspended solids in stormwater runoff from the Santa Ana River watershed, the largest watershed in southern California. The concentrations of fecal indicator bacteria and F+ coliphages (viruses infecting E. coli) exhibit little-to-no dependence on streamflow rates, whereas the concentrations of total suspended solids (TSS) exhibit a very strong (power-law) dependence on streamflow rates. The different flow fingerprints observed for fecal pollutants, on one hand, and TSS, on the other hand, reflect different sources and transport pathways for these stormwater constituents. The flow-independent nature of fecal indicator bacteria and F+ coliphages is consistent with the idea that these contaminants are ubiquitously present on the surface of the urban landscape and rapidly partition into the surface water as the landscape is wetted by rainfall. The flow-dependent nature of TSS, on the other hand, is usually ascribed to the shear-induced erosion of channel bed sediments and/or the expansion of drainage area contributing to runoff. The apparent ubiquity of fecal indicator bacteria and F+ coliphages, together with the very high storm-loading rates of fecal indicator bacteria and the low detection frequency of human adenovirus and human enterovirus, suggest that fecal pollution in stormwater runoff from the Santa Ana River watershed is primarily of nonhuman waste origin.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • California
  • Coliphages / isolation & purification
  • Enterobacteriaceae / isolation & purification
  • Feces* / microbiology
  • Feces* / virology
  • Water Pollutants*

Substances

  • Water Pollutants