Gradient learning in spiking neural networks by dynamic perturbation of conductances
- PMID: 16907616
- DOI: 10.1103/PhysRevLett.97.048104
Gradient learning in spiking neural networks by dynamic perturbation of conductances
Abstract
We present a method of estimating the gradient of an objective function with respect to the synaptic weights of a spiking neural network. The method works by measuring the fluctuations in the objective function in response to dynamic perturbation of the membrane conductances of the neurons. It is compatible with recurrent networks of conductance-based model neurons with dynamic synapses. The method can be interpreted as a biologically plausible synaptic learning rule, if the dynamic perturbations are generated by a special class of "empiric" synapses driven by random spike trains from an external source.
Similar articles
-
Learning in neural networks by reinforcement of irregular spiking.Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Apr;69(4 Pt 1):041909. doi: 10.1103/PhysRevE.69.041909. Epub 2004 Apr 30. Phys Rev E Stat Nonlin Soft Matter Phys. 2004. PMID: 15169045
-
Hopf bifurcation in the evolution of networks driven by spike-timing-dependent plasticity.Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 2):056103. doi: 10.1103/PhysRevE.86.056103. Epub 2012 Nov 6. Phys Rev E Stat Nonlin Soft Matter Phys. 2012. PMID: 23214839
-
Layered synchronous propagation of noise-induced chaotic spikes in linear arrays.Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 1):021916. doi: 10.1103/PhysRevE.72.021916. Epub 2005 Aug 31. Phys Rev E Stat Nonlin Soft Matter Phys. 2005. PMID: 16196613
-
Resonate-and-fire neurons.Neural Netw. 2001 Jul-Sep;14(6-7):883-94. doi: 10.1016/s0893-6080(01)00078-8. Neural Netw. 2001. PMID: 11665779 Review.
-
Introduction to spiking neural networks: Information processing, learning and applications.Acta Neurobiol Exp (Wars). 2011;71(4):409-33. doi: 10.55782/ane-2011-1862. Acta Neurobiol Exp (Wars). 2011. PMID: 22237491 Review.
Cited by
-
A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback.PLoS Comput Biol. 2008 Oct;4(10):e1000180. doi: 10.1371/journal.pcbi.1000180. Epub 2008 Oct 10. PLoS Comput Biol. 2008. PMID: 18846203 Free PMC article.
-
Dynamics of dual prism adaptation: relating novel experimental results to a minimalistic neural model.PLoS One. 2013 Oct 29;8(10):e76601. doi: 10.1371/journal.pone.0076601. eCollection 2013. PLoS One. 2013. PMID: 24204643 Free PMC article.
-
Chaotic neural dynamics facilitate probabilistic computations through sampling.Proc Natl Acad Sci U S A. 2024 Apr 30;121(18):e2312992121. doi: 10.1073/pnas.2312992121. Epub 2024 Apr 22. Proc Natl Acad Sci U S A. 2024. PMID: 38648479 Free PMC article.
-
Reinforcement learning on slow features of high-dimensional input streams.PLoS Comput Biol. 2010 Aug 19;6(8):e1000894. doi: 10.1371/journal.pcbi.1000894. PLoS Comput Biol. 2010. PMID: 20808883 Free PMC article.
-
Reinforcement learning in populations of spiking neurons.Nat Neurosci. 2009 Mar;12(3):250-2. doi: 10.1038/nn.2264. Epub 2009 Feb 15. Nat Neurosci. 2009. PMID: 19219040
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources