Intracellular recording, which allows direct measurement of the membrane potential and currents of individual neurons, requires a very mechanically stable preparation and has thus been limited to in vitro and head-immobilized in vivo experiments. This restriction constitutes a major obstacle for linking cellular and synaptic physiology with animal behavior. To overcome this limitation we have developed a method for performing whole-cell recordings in freely moving rats. We constructed a miniature head-mountable recording device, with mechanical stabilization achieved by anchoring the recording pipette rigidly in place after the whole-cell configuration is established. We obtain long-duration recordings (mean of approximately 20 min, maximum 60 min) in freely moving animals that are remarkably insensitive to mechanical disturbances, then reconstruct the anatomy of the recorded cells. This head-anchored whole-cell recording technique will enable a wide range of new studies involving detailed measurement and manipulation of the physiological properties of identified cells during natural behaviors.