According to classical concept, due to chemical synapses, information in the central nervous system is transferred in one direction: from presynaptic neurons to postsynaptic ones. Although several cases of information transfer in the opposite direction were known for a long time, those were considered as rare exceptions. However, recent results indicate that retrograde signaling between brain neurons is rather a common phenomenon. In this review we will focus on two related forms of short-term plasticity of GABAergic and glutamatergic synaptic transmission observed in several brain structures and mediated by retrograde messengers endocannabinoids. Namely, we will characterize phenomenon termed "depolarization-induced suppression of inhibition", observed at GABAergic synapses and related phenomenon observed at glutamatergic synapses named "depolarization-induced suppression of excitation".