Metabolic labeling of plant cell cultures with K(15)NO3 as a tool for quantitative analysis of proteins and metabolites

Plant Methods. 2006 Sep 4;2:14. doi: 10.1186/1746-4811-2-14.


Strategies for robust quantitative comparison between different biological samples are of high importance in experiments that address biological questions beyond the establishment of protein lists. Here, we propose the use of 15N-KNO3 as the only nitrogen source in Arabidopsis cell cultures in order to achieve a metabolically fully labeled cell population. Proteins from such metabolically labeled culture are distinguishable from unlabeled protein populations by a characteristic mass shift that depends on the amino acid composition of the tryptic peptide analyzed. In addition, the metabolically labeled cell extracts are also suitable for comparative quantitative analysis of nitrogen-containing cellular metabolic complement. Protein extracts from unlabeled and from standardized 15N-labeled cells were combined into one sample for joined analytical processing. This has the advantage of (i) reduced experimental variability and (ii) immediate relative quantitation at the level of single extracted peptide and metabolite spectra. Together ease and accuracy of relative quantitation for profiling experiments is substantially improved. The metabolic labeling strategy has been validated by mixtures of protein extracts and metabolite extracts from the same cell cultures in known ratios of labeled to unlabeled extracts (1:1, 1:4, and 4:1). We conclude that saturating metabolic 15N-labeling provides a robust and affordable integrative strategy to answer questions in quantitative proteomics and nitrogen focused metabolomics.