Optimal Flight Initiation Distance

J Theor Biol. 2007 Jan 7;244(1):59-67. doi: 10.1016/j.jtbi.2006.07.011. Epub 2006 Jul 21.

Abstract

Decisions regarding flight initiation distance have received scant theoretical attention. A graphical model by Ydenberg and Dill (1986. The economics of fleeing from predators. Adv. Stud. Behav. 16, 229-249) that has guided research for the past 20 years specifies when escape begins. In the model, a prey detects a predator, monitors its approach until costs of escape and of remaining are equal, and then flees. The distance between predator and prey when escape is initiated (approach distance = flight initiation distance) occurs where decreasing cost of remaining and increasing cost of fleeing intersect. We argue that prey fleeing as predicted cannot maximize fitness because the best prey can do is break even during an encounter. We develop two optimality models, one applying when all expected future contribution to fitness (residual reproductive value) is lost if the prey dies, the other when any fitness gained (increase in expected RRV) during the encounter is retained after death. Both models predict optimal flight initiation distance from initial expected fitness, benefits obtainable during encounters, costs of escaping, and probability of being killed. Predictions match extensively verified predictions of Ydenberg and Dill's (1986) model. Our main conclusion is that optimality models are preferable to break-even models because they permit fitness maximization, offer many new testable predictions, and allow assessment of prey decisions in many naturally occurring situations through modification of benefit, escape cost, and risk functions.

MeSH terms

  • Animals
  • Escape Reaction*
  • Models, Biological*
  • Motor Activity
  • Predatory Behavior*
  • Reproduction