Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Oct;12(5):425-34.
doi: 10.1177/1073858406290794.

Lipid Signaling and Synaptic Plasticity

Affiliations
Review

Lipid Signaling and Synaptic Plasticity

Nan Sang et al. Neuroscientist. .

Abstract

Lipids are essential components of plasma- and organelle-membranes, not only providing a frame for embedded proteins (e.g., receptors and ion channels) but also functioning as reservoirs for lipid mediators. Increasing evidence indicates that bioactive lipids such as eicosanoids, endocannabinoids, and lysophospholipids serve as intercellular and intracellular signaling molecules participating in physiological and pathological functions in the brain. The discovery of some of these lipid receptors and novel lipid signaling mediators has sparked an intense interest in lipidomic neurobiology research. Classic prostaglandins (PGD(2), PGE(2), PGF(2alpha), PGI(2), and TXA(2)), catalyzed by cyclooxygenases (COX), are synthesized from arachidonic acid (AA). Experimental studies demonstrate that prostaglandin E(2) (PGE(2)), mainly derived from the COX-2 reaction, is an important mediator, acting as a retrograde messenger via a presynaptic PGE(2) subtype 2 receptor (EP(2)) in modulation of synaptic events. Novel prostaglandins (prostaglandin glycerol esters and prostaglandin ethanolamides) are COX-2 oxidative metabolites of endogenous cannabinoids (2-arachidonyl glycerol and arachidonyl ethanolamide). Recent evidence suggests that these new types of prostaglandins are likely novel signaling mediators involved in synaptic transmission and plasticity. This means that COX- 2 plays a central role in metabolisms of AA and endocannabinoids (eCBs) and productions of AA- and eCB- derived prostaglandins. Thus, in the present review article, the authors will mainly discuss COX-2 regulation of prostaglandin signaling in modulation of hippocampal synaptic transmission and plasticity.

Similar articles

See all similar articles

Cited by 26 articles

See all "Cited by" articles

Publication types

LinkOut - more resources

Feedback